China starts mass production of carbon-14 isotope

The Qinshan plant (Image: CNNC)

The carbon-14 isotope is being produced at the Qinshan nuclear power plant, China National Nuclear Corporation (CNNC) has announced.

According to CNNC the development means that the country can fully meet its demand for carbon-14, which is used in medical and scientific research and in fields including agriculture and chemistry as well as in medicine and biology. Radiocarbon dating uses carbon-14 to determine the true age of ancient objects up to 50,000 years old.

Apart from very limited production in experimental reactors, it was previously imported, with CNNC saying it was "expensive and supply could not be guaranteed - the shortage of supply has seriously restricted development of downstream industries". The irradiated carbon-14 target was successfully extracted from the Qinshan Nuclear Power Plant's heavy water reactor unit at 13:48 on Saturday 20 April.

Shang Xianhe, general manager of Qinshan Nuclear Power, told reporters: "This is the first time China has achieved mass production of carbon-14 isotopes in a commercial nuclear power reactor. From now on, it is expected that we can produce about 150 curies of carbon-14 isotopes every year, which can fully meet China's market demand."

The carbon-14 targets will be supplied to the market at the end of 2024 after being separated and purified, CNNC said. "This will effectively promote the development of China's isotope application industry chain and further establish and improve industry-university-research cooperation to develop commercial reactors. The research and development system for irradiation-produced isotopes promotes and drives the research and development of high-tech nuclear drugs and nuclear medicine industries by downstream medical enterprises, providing strong support for the development of the domestic isotope application industry."Qinshan is China's largest nuclear power plant, comprising seven reactors. Construction of Phase I of the plant - a 300 MWe pressurised water reactor (PWR) which was the first indigenously-designed Chinese nuclear power station to be built - began in 1985, with the unit entering commercial operation in 1994. Qinshan Phase II is home to four operating CNP-600 PWRs, built with a high degree of localisation. Units 1 and 2, comprising the first stage of Phase II, began operating in 2002 and 2004, respectively. Units 3 and 4 entered commercial operation in October 2010 and April 2021. Phase III consists of two 750 MWe pressurised heavy water reactors supplied by Atomic Energy of Canada Ltd and commissioned in 2002 and 2003. Researched and written by World Nuclear News China starts mass production of carbon-14 isotope : New Nuclear - World Nuclear News
Read More........

Nuclear's role in reaching climate targets recognised by G7

The meeting of the G7 ministers (Image: G7 Italia)

The Group of Seven (G7) nations have committed to support the use of nuclear energy in those countries that opt to use it, a communique released at the end of the G7 Ministerial Meeting on Climate, Energy and Environment in Turin, Italy, says.

"Those countries that opt to use nuclear energy or support its use recognise its potential as a clean/zero-emissions energy source that can reduce dependence on fossil fuels to address the climate crises and improve global energy security," the document states.

"These countries recognise nuclear energy as a source of baseload power, providing grid stability and flexibility, and optimising use of grid capacity, while countries that do not use nuclear energy or do not support its use prefer other options to achieve the same goals, taking into account their assessment of associated risks and costs of nuclear energy."

The ministers noted the declaration issued by 25 countries during the COP28 climate conference in Dubai in December last year, setting a goal to triple global nuclear generating capacity by 2050. The communique said the ministers "recognise that, for countries that opt to use it, nuclear energy will play a role in reducing dependence on fossil fuels, supporting the transition to net-zero and ensuring energy security, while other countries choose other energy sources to achieve these goals".

The ministers also said that new reactor designs - including advanced and small modular reactors - "could bring in the future additional benefits such as improved safety and sustainability, reduced cost of production, reduced project risk, waste management improvement, better social acceptance, opportunities for industry by providing at the same time energy, high temperature heat, hydrogen".

They committed to support multilateral efforts to strengthen the resilience of nuclear supply chains and to continue the cooperation for building a robust nuclear supply chain in the framework of G7 and of the Nuclear Energy Working Group established in Sapporo.

The ministers noted that G7 leaders remain committed to reducing reliance on civil nuclear-related goods from Russia and the ongoing efforts by countries that operate Russian-designed reactors to make progress in securing alternative nuclear fuel contracts and to reduce dependencies related to spare parts, components and services.

They also said they would promote research and development initiatives on innovative nuclear power technologies "for those countries that opt to use nuclear energy or support its use".

The communique added that the G7 will "promote the responsible deployment of nuclear energy technologies including for advanced and small modular reactors, including microreactors, and work collectively to share national best practices, including for responsible waste management, enable greater access to project financing tools, support sectorial collaboration, designing licensing procedures and strengthening coordination on development of commercial projects among interested G7 members and third markets".

The ministers said: "We underscore the importance for all countries and their respective people of upholding the highest standards of safety, security, and safeguards and non-proliferation, particularly as more countries adopt nuclear power as part of their energy mix."

Speaking at a joint press conference following the ministerial meeting, which he presided over, Italy's Minister of the Environment and Energy Security, Gilberto Pichetto Fratin said: "When it comes to nuclear energy ... our seven countries indicated in the communique that we will proceed together in order to promote further research and ensure that the conditions are in place to promote the use of nuclear energy, which is a clean form of energy."

He added, without naming Germany: "This is something that is not binding. Obviously, we are aware that in the G7 there is a country that currently does not want to pursue the development of nuclear energy."

The ministers' statement came following a call by the nuclear industry for G7 governments to embrace nuclear deployment as a strategic priority, by maximising use of existing nuclear power plants and setting clear plans for further deployment that would fulfil the targets they set at COP28, to triple global nuclear capacity.

The statement was signed by the heads of Associazione Italiana Nucleare, Canadian Nuclear Association, Groupement des Industriels Français de l'Energie Nucléaire (Gifen), Japan Atomic Industrial Forum, Nuclear Energy Institute, Nuclear Industry Association, Nucleareurope and World Nuclear Association.

The G7 is an informal forum that brings together Italy, Canada, France, Germany, Japan, the UK, and the USA. The European Union also participates in the group and is represented at the summits by the President of the European Council and the President of the European Commission.Researched and written by World Nuclear News. Nuclear's role in reaching climate targets recognised by G7 : Nuclear Policies - World Nuclear News
Read More........

The Car Fueled Entirely by the Sun Takes Huge Step Towards Production

credit – Aptera, via X

One of the most hotly anticipated concept cars in recent history, the Aptera solar-powered car took a large step towards reality recently as the first-ever production-grade body arrived at the company’s headquarters in San Diego.

This three-wheeler is advertised as containing 34 square feet of solar paneling that actually powers the car as it drives or while it’s parked, but so many aspects are completely new in a commercial automobile designed for mass production that extra precautions and preparations are needed before it can hit the road.

“We had so much fun last week celebrating a company milestone—the arrival of Aptera’s first production body in San Diego,” the company wrote in a post on X. “Now Team Aptera is back to work finalizing the cable routing, connectors, and placement of components in preparation for our first [production-intent] builds.”

According to Elektrek, the company has ordered all the parts for its production-intent battery packs, and other non-structural components are currently being “validated” in Italy by the company’s supply partner.

The suspension, safety equipment, and drivetrain are yet to be finalized for production models. Still, the company has gone further than many before them, because the design they are currently finalizing is not meant to be an eye-raiser or science project, like some GNN has reported on.

When the PI-2 Aptera solar trike is finally ready, it will be because the company is producing 10,000 a year.

Despite looking as dramatic as any Pagani or Lamborghini, the Aptera’s tapered backside, aerodynamic body, and arched, dolphin-like undercarriage are all designed to reduce drag.

In fact, the detail paid to the reduction of drag and energy use borders on obsessive. But it’s through this ultra-efficiency that solar power, a relatively limited form of electricity generation, can actually become a useful feature for powering a car.

“We think energy should be used to turn your wheels—that starts with aerodynamics,” says Co-CEO Chris Anthony, in a video released by the company in 2021 announcing it was taking preorders.

“In a typical vehicle you use 60% of your fuel just pushing the air out of the way at highway speeds; so if you could take that aerodynamic drag down to 0, you’d instantly get 60% better fuel economy.

“Instead of having 200-300 parts to the body, [the Aptera] have four parts to the main structure, and that makes it much easier to build, track, and assemble,” says Steve Fambro, the second co-founder of the company, in the same video.

The company says the Aptera’s solar panels will deliver 40 miles of range from charging per sunny day, but the car can be plugged in like any other EV. Aptera also maintains that its vehicle will have 1,000 miles of range because of this perfect aerodynamism, low-weight, and efficient drivetrain. Source: https://www.goodnewsnetwork.org/the-car-fueled-entirely-by-the-sun-takes-huge-step-towards-production/
Read More........

Incredible 60% of Europe’s Electricity Was Powered by Clean Energy in the First Two Months of 2024

Irish wind turbines – David de la Iglesia Villar, marked CC License.

According to an energy think tank, Europe’s generation of 516.5 terawatt hours of renewable electricity in January and February satisfied 60% of overall power demand. The generation is a year-over-year gain of 12% from the same period in 2023, and was driven by strong year-on-year growth in hydro and wind, and a rebound in nuclear. Coinciding with this was a 12% year-over-year fall in the use of fossil fuels, with a 15% drop in energy from coal-fired power plants, the think tank Ember, reports. Contrary to the assumption that this is the work of solar farms and wind turbines, the two fastest growing sources across Europe, the strong performance was led by nuclear, which grew 4% y-o-y, and hydropower which at 17.2% of total continental power demand was the highest percentage share of hydroelectricity ever generated in Europe. Hydroelectricity use grew 23% y-o-y to 152 terawatt hours, led by Norway, France, Switzerland, and Portugal. This was six times the amount of Europe’s total solar power yield, which topped out at 24 TWh. Wind power generated an impressive 137.5 TWh of electricity during the first two months of 2024, up 14%. Several countries, like Ireland and Portugal, are recording single days or multi-day stretches in which a two-thirds majority or greater of their populations are using renewable energy entirely.Additionally, European countries are coming up with clever as well as ambitious ideas for how to integrate more green energy sources into their communties; epitomized by Liverpool’s steadily advancing plan to build the world’s largest tidal power project across the Mersey river delta.I ncredible 60% of Europe’s Electricity Was Powered by Clean Energy in the First Two Months of 2024
Read More........

Researchers found 37 mine sites in Australia that could be converted into renewable energy storage. So what are we waiting for?

The world is rapidly moving towards a renewable energy future. To support the transition, we must prepare back-up energy supplies for times when solar panels and wind turbines are not producing enough electricity.

One solution is to build more pumped hydro energy storage. But where should this expansion happen?

Our new research identified more than 900 suitable locations around the world: at former and existing mining sites. Some 37 sites are in Australia.

Huge open-cut mining pits would be turned into reservoirs to hold water for renewable energy storage. It would give the sites a new lease on life and help shore up the world’s low-emissions future.

The benefits of pumped hydro storage

Pumped hydro energy storage has been demonstrated at scale for more than a century. Over the past few years, we have been identifying the best sites for “closed-loop” pumped hydro systems around the world.

Unlike conventional hydropower systems operating on rivers, closed-loop systems are located away from rivers. They require only two reservoirs, one higher than the other, between which water flows down a tunnel and through a turbine, producing electricity.

The water can be released – and power produced – to cover gaps in electricity supply when output from solar and wind is low (for example on cloudy or windless days). And when wind and solar are producing more electricity than is needed – such as on sunny or windy days – this cheap surplus power is used to pump the water back up the hill to the top reservoir, ready to be released again.

Off-river sites have very small environmental footprints and require very little water to operate. Pumped hydro energy storage is also generally cheaper than battery storage at large scales.

Batteries are the preferred method for energy storage over seconds to hours, while pumped hydro is preferred for overnight and longer storage.

Pumped-hydro storage technology has been demonstrated at scale for over a century. Shutterstock

Why mining sites?

There are big benefits to converting mining areas into pumped hydro plants.

For a start, the hole has already been dug, reducing construction costs. What’s more, mining sites are typically already serviced by roads and transmission infrastructure. The site usually has access to a water source for which the mine operators may have pumping rights. And the development takes place on land that is already cleared of vegetation, avoiding the need to disturb new areas.

Finally, community support may have already been obtained for the mining operations, which could easily be rolled over into a pumped hydro site.

In Australia, one pumped hydro energy storage project is already being built at a former gold mine site at Kidston in Far North Queensland.

The feasibility of two others is being assessed at Mount Rawdon near Bundaberg in Queensland, and at Muswellbrook in New South Wales. Both would repurpose old mining pits.

What we found

Our previous research identified suitable locations in undeveloped areas (excluding protected land) and using existing reservoirs. Now, we have turned our attention to mine sites.

Our study used a computer algorithm to search the Earth’s surface for suitable sites. It looked for mining pits, pit lakes and tailings ponds in mining sites which were located near suitable land for a new upper reservoir. The idea is that the reservoir and mining site are “paired” and water pumped between them.

Globally, we identified 904 suitable mining sites across 77 countries.

Some 37 suitable sites are located in Australia. They include the Mount Rawdon and Muswellbrook mining pits already under investigation.

There are a number of potential options in Western Australia: in the iron-ore region of the Pilbara, south of Perth and around Kalgoorlie.

Options in Queensland and New South Wales are mostly located down the east coast, including the Coppabella Mine and the coal mining pits near the old Liddell Power Station. Possible sites also exist inland at Mount Isa in Queensland and at the Cadia Hill gold mine near Orange in NSW.

Potential sites in South Australia include the old Leigh Creek coal mine in the Flinders Ranges and the operating Prominent Hill mine northwest of Adelaide. Tasmania and Victoria also offer possible locations, although many other non-mining options exist in these states for pumped hydro storage.

We are not suggesting that operating mines be closed – rather, that pumped hydro storage be considered as part of site rehabilitation at the end of the mine’s life.

If old mining sites are to be converted into pumped hydro, several challenges must be addressed. For example, mine pits may contain contaminants that, if filled with water, could seep into groundwater. However, this could be overcome by lining reservoirs.

Looking ahead

Australia has set a readily achievable goal of reaching 82% renewable electricity by 2030.

The Australian Energy Market Operator suggests by 2050, this nation needs about 640 gigawatt-hours of dispatchable or “on demand” storage to support solar and wind capacity. We currently have about 17 gigawatt-hours of electricity storage, with more committed by Snowy 2.0 and other projects.

The 37 possible pumped hydro sites we’ve identified could deliver 540 gigawatt-hours of storage potential. Combined with other non-mining sites we’ve identified previously, the options are far more numerous than our needs.

This means we can afford to be picky, and develop only the very best sites. So what are we waiting for?The Conversation

Timothy Weber, Research Officer for School of Engineering, Australian National University and Andrew Blakers, Professor of Engineering, Australian National University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More........

Nuclear battery: Chinese firm aiming for mass market production

The BV100 battery (Image: Betavolt)
Beijing Betavolt New Energy Technology Company Ltd claims to have developed a miniature atomic energy battery that can generate electricity stably and autonomously for 50 years without the need for charging or maintenance. It said the battery is currently in the pilot stage and will be put into mass production on the market.

Atomic energy batteries - also known as nuclear batteries or radioisotope batteries - work on the principle of utilising the energy released by the decay of nuclear isotopes and converting it into electrical energy through semiconductor converters.

Betavolt, which was established in April 2021, says its battery "combines nickel-63 nuclear isotope decay technology and China's first diamond semiconductor (4th generation semiconductor) module to successfully realise the miniaturisation of atomic energy batteries".

The company's team of scientists developed a unique single-crystal diamond semiconductor that is just 10 microns thick, placing a 2-micron-thick nickel-63 sheet between two diamond semiconductor converters. The decay energy of the radioactive source is converted into an electrical current, forming an independent unit. Betavolt said its nuclear batteries are modular and can be composed of dozens or hundreds of independent unit modules and can be used in series and parallel, so battery products of different sizes and capacities can be manufactured.

The composition of a nuclear battery (Image: Betavolt)
Betavolt says its batteries can meet the needs of long-lasting power supply in multiple scenarios such as aerospace, AI equipment, medical equipment, micro-electromechanical systems, advanced sensors, small drones and micro-robots. "If policies allow, atomic energy batteries can allow a mobile phone to never be charged, and drones that can only fly for 15 minutes can fly continuously," it said.

The first battery that the company plans to launch is the BV100, which it claims will be the world's first nuclear battery to be mass-produced. Measuring 15mm by 15mm and 5 mm thick, the battery can generate 100 microwatts, with a voltage of 3V. The company plans to launch a 1-watt battery in 2025.

Betavolt says its atomic energy battery is "absolutely safe, has no external radiation, and is suitable for use in medical devices such as pacemakers, artificial hearts, and cochleas in the human body". It adds: "Atomic energy batteries are environmentally friendly. After the decay period, the nickel-63 isotope as the radioactive source turns into a stable isotope of copper, which is non-radioactive and does not pose any threat or pollution to the environment."

The company plans to continue research on using isotopes such as strontium-90, promethium-147 and deuterium to develop atomic energy batteries with higher power and a service life of 2-30 years.Researched and written by World Nuclear News. Nuclear battery: Chinese firm aiming for mass market production : Corporate - World Nuclear News
Read More........

Walking robot tested in Finnish repository : Corporate

The ANYmal robot walks through Onkalo's underground tunnels (Image: Tapani Karjanlahti / Posiva)
A four-legged robot designed for autonomous operation in challenging environments has been put through its paces at a depth of more than 400 metres in the tunnels of the Onkalo underground used nuclear fuel repository near Olkiluoto, Finland.

A research team led by the Swiss robotics company ANYbotics visited Olkiluoto in June to test the functionality of its ANYmal robot in underground facilities. The test was organised by Euratom - the European Atomic Energy Community - together with Finnish radioactive waste management company Posiva Oy.

‍The ANYmal robot has been under development for many years. The roots of the ANYbotics company go back to the Swiss Institute of Technology, EHT. A group of researchers from the educational institution built the first four-legged robot back in 2009, and ANYbotics was founded for the commercialisation of this technology in 2016.

The ANYmal robot uses laser sensors and cameras to observe the environment and can locate its own position very precisely. By combining observation data with location data - such as a map or area scan data - it can plan its navigation route independently when necessary.

Posiva said Onkalo offered a unique framework for the robot to move, noting that there are tunnels in other parts of the world, but no other underground disposal facility has yet been built.

During the test, the robot - measuring 93cm in length, 53cm in width and 89cm in height and weighing about 50kg - travelled through the tunnels of Onkalo for about 1.5 hours. With a fully-charged battery, the robot can operate for up to 2 hours. The purpose was to test how far the robot can travel in Onkalo conditions with one charge, and whether there are any terrains in the tunnel where the robot would not be able to advance.

For the test, the robot first "walked" the planned route by remote control, and scanned the map into its internal system. In the test itself, the robot moved along the scanned route autonomously, although all the time in the line of sight with the research team. It was also available for remote control at any moment, for example in case of danger. Various safety functions were programmed into the robot. For example, it went around the obstacles on the route from a certain safety distance and stopped when something came into its safety area.

Authorities are interested in the use of robots for the reason that a robot can reach places that are inaccessible to humans, for example for nuclear material protection inspection work. Carrying out nuclear safeguards with the help of a robot is also of interest to Posiva, the company said. Robots can also be used in rescue operations and industry. They can be equipped with different devices for different tasks, such as optical and thermal cameras, microphones, gas or radiation detectors.

A video of the ANYmal robot in Onkalo can be found here.Researched and written by World Nuclear News  Source: - World Nuclear News
Read More........

Japan starts discharging treated water into the sea : Regulation & Safety

The process for releasing the ALPS-treated water (Image: Tepco)
Tokyo Electric Power Company (Tepco) announced it has begun releasing treated water currently stored at the damaged Fukushima Daiichi nuclear power plant into the ocean. The operation - expected to take up to 30 years to complete - is being closely monitored by the International Atomic Energy Agency (IAEA).

At the Fukushima Daiichi site, contaminated water - in part used to cool melted nuclear fuel - is treated by the Advanced Liquid Processing System (ALPS), which removes most of the radioactive contamination, with the exception of tritium. This treated water is currently stored in more than 1000 tanks on site. The total tank storage capacity amounts to about 1.37 million cubic metres and all the tanks are expected to reach full capacity in late 2023 or early 2024.

Japan announced in April 2021 it planned to discharge treated water stored at the site into the sea over a period of about 30 years.

On 22 August, the government announced that it had decided to request Tepco begin preparations for the release of ALPS-treated water into the sea.

On the same day, the company transferred a very small amount of ALPS-treated water - about 1 cubic metre - to the dilution facility using the transfer facilities. This water was then diluted with about 1200 cubic metres of seawater and allowed to flow into the discharge vertical shaft (upstream water tank). The water stored in the discharge vertical shaft was then sampled.

"The results showed that the analysis value is approximately equal to the calculated concentration and below 1500 becquerels per litre," Tepco said today. "The sample of the water was also analysed by the Japan Atomic Energy Agency, who confirmed that the analysis value is below 1500 Bq/litre." In comparison, the World Health Organization guideline for drinking water is 10,000 Bq/litre.

Tepco therefore announced it has now moved to the second stage of the water release, the continuous discharge into the sea. At the same time, the company began transmitting data from various points in the process to the IAEA.

"Today at 1.00pm, the seawater transfer pumps will be started up and we will commence the discharge," Tepco said ahead of the process beginning. "During the discharge, one tank group-worth of ALPS-treated water from the measurement/confirmation facility, and the water already stored in the discharge vertical shaft (upper-stream storage) during Stage 1, will be continuously transferred/diluted and discharged into the sea.

"Furthermore, today, the intake/vertical shaft monitors will be put into operation in preparation for the discharge into the sea. We also started uploading real-time data pertaining to the discharge of ALPS-treated water into the sea to our website."
IAEA monitoring

When Japan announced the discharge plan in 2021, it asked the IAEA to review its plans against IAEA safety standards and monitor the release. Neighbouring countries have raised concerns and opposed the planned discharge. An IAEA Task Force was established to implement the assistance to Japan, which included advice from a group of internationally recognised experts from Member States, including members from the region, under the authority of the IAEA Secretariat. The IAEA opened an office at the Fukushima Daiichi plant last month.

"IAEA experts are there on the ground to serve as the eyes of the international community and ensure that the discharge is being carried out as planned consistent with IAEA safety standards," said IAEA Director General Rafael Mariano Grossi. "Through our presence, we contribute to generating the necessary confidence that the process is carried out in a safe and transparent way."

The agency, which confirmed that the discharge had begun, noted: "The IAEA's independent on-site analysis confirmed that the tritium concentration in the diluted water that is being discharged is far below the operational limit of 1500 becquerels per litre."

The IAEA said it will have a presence on site for as long as the treated water is released. It also announced the launch of a webpage to provide live data from Japan on the water discharge, including water flow rates, radiation monitoring data and the concentration of tritium after dilution.

The IAEA experts will observe onsite activities related to the ALPS-treated water discharge, including samples and measurements, and will interface with Tepco and officials from Japan's Nuclear Regulation Authority. The IAEA will also organise review missions periodically to observe activities on site and to request updates and additional data from Japanese authorities. The IAEA said its independent corroboration activities will also continue during the entirety of the discharge and will involve IAEA laboratories and third-party laboratories.

"All of these activities will work together to provide a comprehensive picture of the activities taking place at the Fukushima Daiichi nuclear power plant related to the ALPS-treated water discharge and whether these activities are consistent with relevant international safety standards," said Gustavo Caruso, Director and Coordinator for the ALPS Safety Review at the IAEA and Chair of the Task Force. "The data provided by Tepco, and displayed both by Tepco and IAEA, is just a single piece of the overall monitoring approach and the IAEA's ongoing safety review."Researched and written by World Nuclear News  Source: World Nuclear News
Read More........

Nuclear energy too expensive, too slow to battle climate change: report

Nuclear power as a renewable power option is more expensive and slower to implement than alternatives and therefore is not effective in the effort to battle the climate emergency, rather it is counterproductive, as the funds are then not available for more effective options, says a report on the status and trends of the international nuclear industry.
While the number of operating nuclear reactors has increased globally over the past year by four to 417 as of mid-2019, it remains significantly below historic peak of 438 in 2002, according to the World Nuclear Industry Status Report 2019 (WNISR2019), which is being released at the Central European University (CEU) in Budapest. Nuclear construction has been shrinking over the past five years with 46 units underway as of mid-2019, compared to 68 reactors in 2013 and 234 in 1979. The number of annual construction starts has fallen from 15 in the pre-Fukushima year (2010) to five in 2018 and, so far, one in 2019. The historic peak was in 1976 with 44 construction starts, more than the total in the past seven years. WNISR project coordinator and publisher Mycle Schneider stated: “There can be no doubt: the renewal rate of nuclear power plants is too slow to guarantee the survival of the technology. The world is experiencing an undeclared ‘organic’ nuclear phaseout.” Consequently, as of mid-2019, for the first time the average age of the world nuclear reactor fleet exceeds 30 years. However, renewables continue to outpace nuclear power in virtually all categories. A record 165 gigawatts (GW) of renewables were added to the world’s power grids in 2018; the nuclear operating capacity increased by 9 GW. Globally, wind power output grew by 29 per cent in 2018, solar by 13 per cent, nuclear by 2.4 per cent. Compared to a decade ago, nonhydro renewables generated over 1,900 TWh more power, exceeding coal and natural gas, while nuclear produced less. What does all this mean for the potential role of nuclear power to combat climate change? WNISR2019 provides a new focus chapter on the question. Diana Ãœrge-Vorsatz, Professor at the Central European University and Vice-Chair of the Intergovernmental Panel on Climate Change (IPCC) Working Group III, notes in her Foreword to WNISR2019 that several IPCC scenarios that reach the 1.5°C temperature target rely heavily on nuclear power and that “these scenarios raise the question whether the nuclear industry will actually be able to deliver the magnitude of new power that is required in these scenarios in a cost-effective and timely manner. This report is perhaps the most relevant publication to answer this pertinent question.” Over the past decade, levelised cost estimates for utility-scale solar dropped by 88 per cent, wind by 69 per cent, while nuclear increased by 23 per cent. New solar plants can compete with existing coal fired plants in India, wind turbines alone generate more electricity than nuclear reactors in India and China. But new nuclear plants are also much slower to build than all other options, eg, the nine reactors started up in 2018 took an average of 10.9 years to be completed. In other words, nuclear power is an option that is more expensive and slower to implement than alternatives and therefore is not effective in the effort to battle the climate emergency, rather it is counterproductive, as the funds are then not available for more effective options. The rather surprising outcome of the analyses is that even the extended operation of existing reactors is not climate effective as operating costs exceed the costs of competing energy efficiency and new renewable energy options and therefore durably block their implementation. “You can spend a dollar, a euro, a forint or a ruble only once: the climate emergency requires that investment decisions must favor the cheapest and fastest response strategies. The nuclear power option has consistently turned out the most expensive and the slowest,” Mycle Schneider concludes. The WNISR2019 assesses in 323 pages the status and trends of the international nuclear industry and analyses the potential role of nuclear power as an option to combat climate change. Eight interdisciplinary experts from six countries, including four university professors and the Rocky Mountain Institute’s co-founder and chairman emeritus, have contributed to the report.Source: https://www.domain-b.com
Read More........

India's installed renewable energy capacity reaches 132.15 GW

Image by andreas160578 from Pixabay
  • As of 29 February 2020, India’s cumulative renewable energy capacity stood at 132.15 Giga Watts, with an additional capacity of 46.69 GW under various stages of implementation and 34.07 GW under various stages of bidding.
  • As on same date, the country had cumulative installed capacity of 138.93 GW from non-fossil fuels sources. The cumulative renewable energy capacity and cumulative capacity from non-fossil fuel sources constituted 35.80 per cent and 37.63 per cent of total electricity generation capacity of 369.12 GW installed in the country as on 29 February 2020, respectively.
  • As part of Intended Nationally Determined Contributions as per the Paris Accord on Climate Change, India has undertaken to install at least 40 per cent of its total electricity generation capacity from non-fossil fuel sources by 2030.
  • India has set itself an ambitious target of 175 Giga Watts (GW) of renewable capacity by the year 2022, and is aiming at 450 GW by 2030.
  • India’s primary energy consumption hit 809.2 million tonnes of oil equivalent in 2018, according to BP’s Statistical Review of World Energy. On this metric, the country is behind only China and the US.
  • India’s installed capacity — for all energy sources — was a little under 369 GW at the end of January 2020, according to government figures. Source: https://www.domain-b.com/
Read More........

Spain: Government expects solar to dominate by 2030 with up to 77 GW

Spain has currently an installed PV power of around 4.8 GW. Image: Solaria Energía
In a new report, the Spanish Ministry of Industry, Tourism and Digital Agenda has predicted that solar will become the country’s largest electricity source by the end of the next decade. Cumulative installed PV power could even reach 77 GW by the end of 2030, according to the most bullish scenario drafted by the Spanish government.APRIL 3, 2018 EMILIANO BELLINI

Spain’s Ministry of Industry, Tourism and Digital Agenda has published a new report, including new growth scenarios for the future of the Spanish energy market, which recognizes solar as the future cheapest source of power, and the dominance of PV above all other energy sources by 2030.

The first scenario, called the “distributed generation scenario” (DG), forecasts strong development of renewable energy distributed generation coupled with storage systems.

According to the most optimistic figures provided by the ministry, solar is expected to reach a power production capacity of 47.1 TWh by 2030, thus becoming the country’s leading power source, followed by wind (31.0 TWh), combined cycle plants (24.5 TWh), hydropower (23.0 TWh), cogeneration facilities (8.5 TWh), and nuclear power (7.1 TWh). Overall, storage is expected to account for 2.3 TWh of total demand.

Under this scenario, renewables would have a 70% share in Spain’s electricity mix, while solar PV technology would reach a cumulative installed power of around 77 GW, followed by wind with 47.5 GW.

A second, less ambitious scenario, called “sustainable transition scenario” (TS), also expects solar to become the largest and cheapest source of power by 2030, but with “only” 40 TWh of power production capacity, and no storage deployed. Under this scenario, however, renewables would still account for 67% of total power generation capacity, although part of the missing 7 TWh from solar would be partly replaced with 4 TWh of power generation from coal.

The country’s power demand is expected to increase from around 253 TWh currently, to 285 TWh (TS scenario) and 296 TWh (DG scenario), respectively. Costs of power generation, meanwhile, would range from €52/MWh in the TS scenario to €32.7/MWh in the DG scenario.

Commenting on the scenario with the highest penetration of solar and renewables, the Spanish government said that their increasing share would significantly reduce power generation costs, thus enabling savings of around €9.6 billion.

This would negatively impact the profitability of thermal back-up capacity, which will still be necessary in order to deal with fluctuations, while also making renewable energy project investment returns more problematic, the ministry said.

CO2 emissions, however, would be more than halved, and power exports to France would increase by around 236%, as a consequence of the price spread with the neighboring country, the report’s authors noted.

Spanish solar association, UNEF has welcomed the findings of the report, claiming that the Spanish government has finally acknowledged the high value of the PV technology.

“The forecast of a considerable increase in installed PV capacity by 2030, which would increase tenfold compared to current levels, is a key opportunity to allow citizens to have access to cheaper energy and to reach a more stable development model, in contrast to the dynamics of acceleration-braking-acceleration that has characterized the last years,” said association president, José Donoso.

Read More........

Researchers develop novel method to turn footsteps into usable electricity

New York: Researchers at University of Wisconsin-Madison have developed an inexpensive, simple method that allows them to convert footsteps into usable electricity. The method puts to good use a common waste material -- wood pulp.

The pulp, which is already a common component of flooring, is partly made of cellulose nanofibers.

They are tiny fibers that, when chemically treated, produce an electrical charge when they come in contact with untreated nanofibers.

When the nanofibers are embedded within flooring, they are able to produce electricity that can be harnessed to power lights or charge batteries.

And because wood pulp is a cheap, abundant and renewable waste product of several industries, flooring that incorporates the new technology could be as affordable as conventional materials.

While there are existing similar materials for harnessing footstep energy, they are costly, nonrecyclable, and impractical at a large scale.

"We've been working a lot on harvesting energy from human activities. One way is to build something to put on people, and another way is to build something that has constant access to people. The ground is the most-used place," said Xudong Wang, Associate Professor at University of Wisconsin-Madison.

The team's method published in the journal Nano Energy is the latest in a green energy research field called "roadside energy harvesting" that could, in some settings, rival solar power -- and it does not depend on fair weather.

Researchers like Wang who study roadside energy harvesting methods see the ground as holding great renewable energy potential well beyond its limited fossil fuel reserves. Source: ummid.com
Read More........

New Way To Make Electricity from Magnetism

Credit: Kipp van Schooten and Dali Sun, University of Utah
By showing that a phenomenon dubbed the "inverse spin Hall effect" works in several organic semiconductors - including carbon-60 buckyballs - University of Utah physicists changed magnetic "spin current" into electric current. The efficiency of this new power conversion method isn't yet known, but it might find use in future electronic devices including batteries, solar cells and computers. "This paper is the first to demonstrate the inverse spin Hall effect in a range of organic semiconductors with unprecedented sensitivity," although a 2013 study by other researchers demonstrated it with less sensitivity in one such material, says Christoph Boehme, a senior author of the study published April 18 in the journal Nature Materials. The upper part of this illustration shows the device, built on a small glass slide, that was used in experiments showing that so-called spin current could be converted to electric current using several different organic polymer semiconductors and a phenomenon known as the inverse spin Hall effect. The bottom illustration shows the key, sandwich-like part of the device. An external magnetic field and pulses of microwaves create spin waves in the iron magnet. When those waves hit the polymer or organic semiconductor, they create spin current, which is converted to an electrical current at the copper electrodes. "The inverse spin Hall effect is a remarkable phenomenon that turns so-called spin current into an electric current. The effect is so odd that nobody really knows what this will be used for eventually, but many technical applications are conceivable, including very odd new power-conversion schemes," says Boehme, a physics professor. His fellow senior author, distinguished professor Z. Valy Vardeny, says that by using pulses of microwaves, the inverse spin Hall effect and organic semiconductors to convert spin current into electricity, this new electromotive force generates electrical current in a way different than existing sources. Coal, gas, hydroelectric, wind and nuclear plants all use dynamos to convert mechanical force into magnetic-field changes and then electricity. Chemical reactions power modern batteries and solar cells convert light to electrical current. Converting spin current into electrical current is another method. Scientists already are developing such devices, such as a thermoelectric generator, using traditional inorganic semiconductors. Vardeny says organic semiconductors are promising because they are cheap, easily processed and environmentally friendly. He notes that both organic solar cells and organic LED (light-emitting diode) TV displays were developed even though silicon solar cells and nonorganic LEDs were widely used. Vardeny and Boehme stressed that the efficiency at which organic semiconductors convert spin current to electric current remains unknown, so it is too early to predict the extent to which it might one day be used for new power conversion techniques in batteries, solar cells, computers, phones and other consumer electronics. "I want to invoke a degree of caution," Boehme says. "This is a power conversion effect that is new and mostly unstudied." Boehme notes that the experiments in the new study converted more spin current to electrical current than in the 2013 study, but Vardeny cautioned the effect still "would have to be scaled up many times to produce voltages equivalent to household batteries." From spin current to electric current Just as atomic nuclei and the electrons that orbit them carry electrical charges, they also have another inherent property: spin, which makes them behave like tiny bar magnets that can point north or south. Electronic devices store and transmit information using the flow of electricity in the form of electrons, which are negatively charged subatomic particles. The zeroes and ones of computer binary code are represented by the absence or presence of electrons within silicon or other nonorganic semiconductors. Spin electronics - spintronics - holds promise for faster, cheaper computers, better electronics and LEDs for displays, and smaller sensors to detect everything from radiation to magnetic fields. The inverse spin Hall effect first was demonstrated in metals in 2008, and then in nonorganic semiconductors, Vardeny says. In 2013, researchers elsewhere showed it occurred in an organic semiconductor named PEDOT:PSS when it was exposed to continuous microwaves that were relatively weak to avoid frying the semiconductor. University of Utah physicists Z. Valy Vardeny and Christoph Boehme published a new study in Nature Materials demonstrating that a range of organic semiconductors can be used to convert a so-called magnetic spin current into electric current. They don't yet know the efficiency of this power-conversion method, but say it has possible future uses in future solar cells, batteries and electronic devices like computers and cell phones. 
Credit: Lee J. Siegel, University of Utah
But Boehme and Vardeny say the electrical current generated in that study by the inverse spin Hall effect was small - nanovoltages - and was obscured by microwave heating of the sample and other undesired effects. "We thought, let's build different devices so these spurious effects were eliminated or very small compared with the effect we wanted to observe," Boehme says. In the new study, the researchers used short pulses of more powerful microwaves to utilize the inverse spin Hall effect and convert a spin current to electric current in seven organic semiconductors, mostly at room temperature. One organic semiconductor was PEDOT:PSS - the same material in the 2013 study. The others were three platinum-rich organic polymers, two so-called pi-conjugated polymers and the spherical carbon-60 molecule named buckminsterfullerene because it looks like a pair of geodesic domes popularized by the late architect Buckminster Fuller. The carbon-60 proved surprisingly to be the most efficient semiconductor at converting spin waves into electrical current, Vardeny says. How the experiments were performed The Utah physicists take multiple steps to convert spin current to electrical current. They begin with a small glass slide, about 2.1-inches long and one-sixth-inch wide. Two electrical contacts are attached to one end of the glass slide. Thin, flat copper wires run the length of the slide, connecting the contacts at one end with a "sandwich" at the other end that includes the glass at the bottom, the organic polymer semiconductor being tested in the middle and a nickel-iron ferromagnet on top. This device then is inserted lengthwise into a metal tube about 1-inch diameter and 3.5 inches long. A nonconducting material surrounds the device inside this tube, which then is inserted into a table-sized magnet that generates a magnetic field. "We apply a magnetic field and leave it more or less constant," Boehme says. "Then we hook up the two contacts to a voltage meter and start measuring the voltage coming out of the device as a function of time." A view of the University of Utah physics laboratory where researchers showed that a phenomenon named the inverse spin Hall effect works in several organic semiconductors when pulsed microwaves are applied to the materials. The effect converts so-called spin current to electric current and may find use in future generations of batteries, solar cells and electronic devices.
Credit: Christoph Boehme, University of Utah
With just the magnetic field, no electrical current was detected. But then the Utah physicists bombarded the organic semiconductor device with pulses of microwaves - as powerful as those from a home microwave oven but in pulses ranging from only 100 to 5,000 nanoseconds (the latter equal to one 200,000th of a second). "All of a sudden we saw a voltage during that pulse," Boehme says. Vardeny says the microwave pulses generate spin waves in the device's magnet, then the waves are converted into spin current in the organic semiconductor, and then into an electric current detected as a voltage. Compared with the 2013 study, the use of microwave pulses in the Utah experiments meant "our power is much higher but the heating is much less and the inverse spin Hall effect is about 100 times stronger," Boehme says. In effect, the pulsed microwaves provide a way to enhance the inverse spin Hall effect so it can be used to convert power, Vardeny adds. The new study also showed that the conversion of spin current to electric current works in organic semiconductors via "spin-orbit coupling" - the same process found in inorganic conductors and semiconductors - even though the phenomenon in inorganic and organic materials works in fundamentally different ways, Boehme says. This coupling is much weaker in organic than in nonorganic semiconductors, but "the big achievement we made was to find an experimental method sensitive enough to reliably measure these very weak effects in organic semiconductors," Boehme says. The new study was funded by the National Science Foundation and the University of Utah-NSF Materials Research Science and Engineering Center. Study co-authors with Vardeny and Boehme were these University of Utah physicists: research assistant professors Dali Sun and Hans Malissa, postdoctoral researchers Kipp van Schooten and Chuang Zhang, and graduate students Marzieh Kavand and Matthew Groesbeck. 
  • Contacts and sources: 
  • Lee J. Siegel
  • University of Utah
  • Citation: "Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin–orbit coupling." Authors: Dali Sun, Kipp J. van Schooten, Marzieh Kavand, Hans Malissa, Chuang Zhang, Matthew Groesbeck, Christoph Boehme & Z. Valy Vardeny
  • Nature Materials (2016) doi:10.1038/nmat4618 
Read More........

Cheaper, More Reliable Solar Power with New World Record for Polymer Solar Cells

Credit: Stefan Jerrevång/Linkoping university
Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes. Polymer solar cells have in recent years emerged as a low cost alternative to silicon solar cells. In order to obtain high efficiency, fullerenes are usually required in polymer solar cells to separate charge carriers. However, fullerenes are unstable under illumination, and form large crystals at high temperatures. Polymer solar cells manufactured using low-cost roll-to-roll printing technology, demonstrated here by professors Olle Inganäs (right) and Shimelis Admassie. Now, a team of chemists led by Professor Jianhui Hou at the CAS set a new world record for fullerene-free polymer solar cells by developing a unique combination of a polymer called PBDB-T and a small molecule called ITIC. With this combination, the sun's energy is converted with an efficiency of 11%, a value that strikes most solar cells with fullerenes, and all without fullerenes. Feng Gao, together with his colleagues Olle Inganäs and Deping Qian at Linköping University, have characterized the loss spectroscopy of photovoltage (Voc), a key figure for solar cells, and proposed approaches to further improving the device performance. The two research groups are now presenting their results in the high-profile journal Advanced Materials. -We have demonstrated that it is possible to achieve a high efficiency without using fullerene, and that such solar cells are also highly stable to heat. Because solar cells are working under constant solar radiation, good thermal stability is very important, said Feng Gao, a physicist at the Department of Physics, Chemistry and Biology, Linköping University. -The combination of high efficiency and good thermal stability suggest that polymer solar cells, which can be easily manufactured using low-cost roll-to-roll printing technology, now come a step closer to commercialization, said Feng Gao. 
  • Contacts and sources: Feng Gao, Linköping University
  • Citation: Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability, by Wenchao Zhao, Deping Qian, Shaoqing Zhang, Sunsun Li, Olle Inganäs, Feng Gao and Jianhui Hou. Advanced Materials 2016. DOI: 10.1002/adma.201600281. Source:http://www.ineffableisland.com/
Read More........

A Deep Look Into A Single Molecule

Credit: PTB
The quantum state of a molecular ion has been measured live and in a non-destructive fashion for the first time. The interaction of thermal energy from the environment with motional degrees of freedom is well known and often referred to as Brownian motion (also thermal motion). But in the case of polar molecules, the internal degrees of freedom - in particular the rotational quantum state - are also influenced by the thermal radiation. So far, the detection of the rotational state was only possible by destroying the molecule. However, a German research group has now demonstrated the first implementation of a non-destructive state detection technique for molecular ions. Piet Schmidt and his colleagues from the QUEST-Institute at the Physikalisch-Technische Bundesanstalt (PTB) observed changes in the rotational state of a trapped and indirectly cooled molecular ion in real time and in situ. This technique enables novel spectroscopy methods with applications ranging from chemistry to tests of fundamental physics. The results are published in the current issue of "Nature". Basic concept of the experiment: MgH+ (orange) and Mg+ (green) are trapped together in a linear ion trap. The two-ion compound is cooled to the motional ground state via the atomic ion. An oscillating dipole force changes the motional state according to the rotational state of the molecular ion. This motional excitation can be detected on the atomic ion.  Nowadays atoms can be manipulated with lasers and their spectral features can be investigated with high precision e.g. in optical clocks. In these experiments state detection plays a crucial role: the fluorescence of an atom under illumination with laser light reveals its internal quantum state. Many atoms and most molecules, however, do not fluoresce at all. Therefore, one of the standard procedures for state detection in molecules exploited the fact that molecules can be broken apart with laser light of a certain frequency, depending on their quantum state. This lets one measure the quantum state of the molecule by destroying it. Of course this detection procedure can only be applied once per molecule. Project leader Piet Schmidt has a long experience of systems in which state detection is difficult to achieve. He was involved in the development of 'quantum logic spectroscopy' in the research group of Nobel laureate David J. Wineland and extended it with his own research team to 'photon recoil spectroscopy'. Typical detection signal, where a quantum jump into the (J=1)-rotational state (from red to blue area) and a subsequent jump out of this state (blue to red) can be seen All of these novel
Credit: PTB
spectroscopy techniques are based on a common principle: beside the ion under investigation, one traps a second ion of a different species that is controllable and whose fluorescence can be used for state detection. Because of their electrical repulsion, both particles behave as if they were connected by a strong spring, such that their motion is synchronized. This is how the measurement of one particle can reveal properties of the other particle. Schmidt and his colleagues use a molecular MgH+-ion (which is the subject of the investigation) and an atomic Mg+-ion (on which the measurements will be performed). They hold both particles with electric fields in an ion trap. Then, lasers are used to cool the particles' motion to the ground state, where the synchronous motion almost comes to rest. The new trick demonstrated in this experiment relies on an additional laser, whose action is similar to an optical tweezer. It can be used to exert forces on the molecule. "The laser shakes the molecule only if the molecule is in one particular rotational state" explains Fabian Wolf, physicist in Schmidt's research group "We can detect the effect¬ -which is an excitation of the common motion of the molecule and the atom- on the atomic ion by using additional lasers. If the atom lights up, the molecule was in the state we probed. If it stays dark, the molecule was in some other state." Piet Schmidt highlights two main results of the team's findings: "Because of the non-destructive nature of our technique, we could observe the molecule jumping from one rotational state to the other. It is the first time such quantum jumps have been observed directly in an isolated molecule. Moreover, we could improve on the uncertainty of a transition frequency to an electronically excited state". He also points towards future goals: "The next step is the systematic preparation of the molecule in that quantum state instead of waiting for the thermal radiation to randomly prepare it." The researchers feel confident that their development will be important for the scientific communities that need precise methods for spectroscopy, e.g. quantum chemistry, where the inner structure of molecules is investigated, or astronomy, where spectra of cold molecules can teach us new things about the origin and the properties of the universe. Furthermore, precision molecular spectroscopy is important for the search for a variation of the fundamental constants and so far hidden properties of fundamental particles, such as the electric dipole moment of the electron. These tests of fundamental physics were Schmidt's original motivation for working on the novel detection technique."To make these applications practical, we have to push molecular spectroscopy to a level similar to that of today's optical clocks based on atoms", says Piet Schmidt, when he gets asked for his long term goal, "For this purpose we have to improve our measurement resolution by orders of magnitude, which for sure will take several years". Source: http://www.ineffableisland.com/
  • Contacts and sources: Prof. Dr. Piet O. Schmidt
  • QUEST-Institute at the Physikalisch-Technische Bundesanstalt (PTB)
  • Citation: F. Wolf, Y. Wan, J.C. Heip, F. Gebert, C. Shi, P.O. Schmidt: Non-destructive state detection for quantum logic spectroscopy of molecular ions. Nature (2016), DOI: 10.1038/nature16513
Read More........

Can Artificial Trees Generate Renewable Power

Credit: Tech Briefs
New tools for harvesting wind energy may soon look less like giant windmills and more like tiny leafless trees. A project at The Ohio State University is testing whether high-tech objects that look a bit like artificial trees can generate renewable power when they are shaken by the wind--or by the sway of a tall building, traffic on a bridge or even seismic activity. In a recent issue of the Journal of Sound and Vibration, researchers report that they've uncovered something new about the vibrations that pass through tree-shaped objects when they are shaken. Specifically, they've demonstrated that tree-like structures made with electromechanical materials can convert random forces--such as winds or footfalls on a bridge--into strong structural vibrations that are ideal for generating electricity. The idea may conjure images of fields full of mechanical trees swaying in the breeze. But the technology may prove most valuable when applied on a small scale, in situations where other renewable energy sources such as solar are not an option, said project leader Ryan Harne, assistant professor of mechanical and aerospace engineering at Ohio State, and director of the Laboratory of Sound and Vibration Research. The "trees" themselves would be very simple structures: think of a trunk with a few branches--no leaves required. Early applications would include powering the sensors that monitor the structural integrity and health of civil infrastructure, such as buildings and bridges. Harne envisions tiny trees feeding voltages to a sensor on the underside of a bridge, or on a girder deep inside a high-rise building. The project takes advantage of the plentiful vibrational energy that surrounds us every day, he said. Some sources are wind-induced structural motions, seismic activity and human activity. "Buildings sway ever so slightly in the wind, bridges oscillate when we drive on them and car suspensions absorb bumps in the road," he said. "In fact, there's a massive amount of kinetic energy associated with those motions that is otherwise lost. We want to recover and recycle some of that energy." Sensors monitor the soundness of a structure by detecting the vibrations that pass through it, he explained. The initial aim of the project is to turn those vibrations into electricity, so that structural monitoring systems could actually be powered by the same vibrations they are monitoring. Today, the only way to power most structural sensors is to use batteries or plug the sensors directly into power lines, both of which are expensive and hard to manage for sensors planted in remote locations. If sensors could capture vibrational energy, they could acquire and wirelessly transmit their data is a truly self-sufficient way. At first, the idea of using tree-like devices to capture wind or vibration energies may seem straightforward, because real trees obviously dissipate energy when they sway. And other research groups have tested the effectiveness of similar tree structures using idealized--that is, not random--vibrations. But until now, researchers haven't made a concerted effort to capture realistic ambient vibrations with a tree-shaped electromechanical device--mainly because it was assumed that random forces of nature wouldn't be very suitable for generating the consistent oscillations that yield useful electrical energies. First, through mathematical modeling, Harne determined that it is possible for tree-like structures to maintain vibrations at a consistent frequency despite large, random inputs, so that the energy can be effectively captured and stored via power circuitry. The phenomenon is called internal resonance, and it's how certain mechanical systems dissipate internal energies. In particular, he determined that he could exploit internal resonance to coax an electromechanical tree to vibrate with large amplitudes at a consistent low frequency, even when the tree was experiencing only high frequency forces. It even worked when these forces were significantly overwhelmed by extra random noise, as natural ambient vibrations would be in many environments. He and his colleagues tested the mathematical model in an experiment, where they built a tree-like device out of two small steel beams--one a tree "trunk" and the other a "branch"--connected by a strip of an electromechanical material, polyvinylidene fluoride (PVDF), to convert the structural oscillations into electrical energy. They installed the model tree on a device that shook it back and forth at high frequencies. At first, to the eye, the tree didn't seem to move because the device oscillated with only small amplitudes at a high frequency. Regardless, the PVDF produced a small voltage from the motion: about 0.8 volts. Then they added noise to the system, as if the tree were being randomly nudged slightly more one way or the other. That's when the tree began displaying what Harne called "saturation phenomena": It reached a tipping point where the high frequency energy was suddenly channeled into a low frequency oscillation. At this point, the tree swayed noticeably back and forth, with the trunk and branch vibrating in sync. This low frequency motion produced more than double the voltage--around 2 volts. Those are low voltages, but the experiment was a proof-of-concept: Random energies can produce vibrations that are useful for generating electricity. "In addition, we introduced massive amounts of noise, and found that the saturation phenomenon is very robust, and the voltage output reliable. That wasn't known before," Harne said. Harne will continue this work, which he began when he was a postdoctoral researcher at the University of Michigan. There, his colleagues and co-authors on the paper were Kon-Well Wang and Anqi Sun of the Department of Mechanical Engineering. Source: http://www.ineffableisland.com/

  • Contacts and sources: Ryan Harne, The Ohio State University, 
  • Written by Pam Frost Gorder 
  • The initial phase of this research was supported by the University of Michigan Summer Undergraduate Research in Engineering program and the University of Michigan Collegiate Professorship. 
Read More........

Processing of Used Nuclear Fuel

Reprocessing Used Fuel: Purex Flow Sheet
Chemistry of Purex
.Subscribe
  • Used nuclear fuel has long been reprocessed to extract fissile materials for recycling and to reduce the volume of high-level wastes.
  • Recycling today is largely based on the conversion of fertile U-238 to fissile plutonium.
  • New reprocessing technologies are being developed to be deployed in conjunction with fast neutron reactors which will burn all long-lived actinides, including all uranium and plutonium, without separating them from one another.
  • A significant amount of plutonium recovered from used fuel is currently recycled into MOX fuel; a small amount of recovered uranium is recycled so far.
World-Nuclear: A key, nearly unique, characteristic of nuclear energy is that used fuel may be reprocessed to recover fissile and fertile materials in order to provide fresh fuel for existing and future nuclear power plants. Several European countries, Russia and Japan have had a policy to reprocess used nuclear fuel, although government policies in many other countries have not yet come round to seeing used fuel as a resource rather than a waste.

Over the last 50 years the principal reason for reprocessing used fuel has been to recover unused plutonium, along with less immediately useful unused uranium, in the used fuel elements and thereby close the fuel cycle, gaining some 25% to 30% more energy from the original uranium in the process. This contributes to national energy security. A secondary reason is to reduce the volume of material to be disposed of as high-level waste to about one-fifth. In addition, the level of radioactivity in the waste from reprocessing is much smaller and after about 100 years falls much more rapidly than in used fuel itself.

These are all considerations based on current power reactors, but moving to fourth-generation fast neutron reactors in the late 2020s changes the outlook dramatically, and means that not only used fuel from today’s reactors but also the large stockpiles of depleted uranium (from enrichment plants, about 1.5 million tonnes in 2015) become a fuel source. Uranium mining will become much less significant.

Another major change relates to wastes. In the last decade interest has grown in recovering all long-lived actinides* together (i.e. with plutonium) so as to recycle them in fast reactors so that they end up as short-lived fission products. This policy is driven by two factors: reducing the long-term radioactivity in high-level wastes, and reducing the possibility of plutonium being diverted from civil use – thereby increasing proliferation resistance of the fuel cycle. If used fuel is not reprocessed, then in a century or two the built-in radiological protection will have diminished, allowing the plutonium to be recovered for illicit use (though it is unsuitable for weapons due to the non-fissile isotopes present).

* Actinides are elements 89 to 103, actinium to lawrencium, including thorium, protactinium and uranium as well as transuranics, notably neptunium, plutonium, americium, cerium and californium. The minor actinides in used fuel are all except uranium and plutonium.

Reprocessing used fuela to recover uranium (as reprocessed uranium, or RepU) and plutonium (Pu) avoids the wastage of a valuable resource. Most of it – about 96% – is uranium, of which less than 1% is the fissile U-235 (often 0.4-0.8%); and up to 1% is plutonium. Both can be recycled as fresh fuel, saving up to 30% of the natural uranium otherwise required. The RepU is chiefly valuable for its fertile potential, being transformed into plutonium-239 which may be burned in the reactor where it is formed.

So far, some 90,000 tonnes (of 290,000 t discharged) of used fuel from commercial power reactors has been reprocessed. Annual reprocessing capacity is now about 4500 tonnes per year for normal oxide fuels, but not all of it is operational.

Between 2010 and 2030 some 400,000 tonnes of used fuel is expected to be generated worldwide, including 60,000 t in North America and 69,000 t in Europe.. Read Full At: http://www.world-nuclear.org/
Read More........

Nanosubmarines powered by light

Nano-scale submarines built from 244 atoms and capable of moving at 2 cm per second have been demonstrated by Rice University. Credit: Loïc Samuel/Rice University
In a study published by Nano Letters, scientists from Rice University in Texas describe how they built and tested nanoscale submarines, which are able to move with incredible speed. The single-molecule, 244-atom submersibles each have a motor powered by ultraviolet light. With each full revolution the motor's tail-like propeller drives the sub forwards a distance of 18 nanometres (nm). However, the motors run at over a million RPM, giving a top speed of nearly two centimetres (0.8 inches) per second: a breakneck pace on the molecular scale. "These are the fastest-moving molecules ever seen in solution," says chemist James Tour, one of the study authors. While they can't be steered yet, the study has proved that molecular motors are powerful enough to drive the sub-10-nanometre craft through solutions of moving molecules of about the same size. From a nano-scale point of view, "this is akin to a person walking across a basketball court with 1,000 people throwing basketballs at him," Tour said. Tour's group has extensive experience with molecular machines. A decade ago, his lab demonstrated nanocars – single-molecule cars with four wheels, axles and independent suspensions that could be "driven" across a surface. Over the years, many research groups have created microscopic machines featuring motors – but most have either used or generated toxic chemicals. A motor conceived in the last decade by Dutch researchers proved suitable for the Rice submersibles, which were produced in a 20-step chemical synthesis. "These motors are well-known and used for different things," said Victor García-López, lead author and Rice graduate student. "But we were the first to propose they can be used to propel nanocars
Credit: Victor García-López/Rice University
– and now submersibles." The motors, which operate more like a bacteria's flagellum than a propeller, complete each revolution in four steps. When excited by light, the double bond that holds the rotor to the body becomes a single bond, allowing it to rotate a quarter step. As the motor seeks to return to a lower energy state, it jumps adjacent atoms for another quarter turn. This process repeats as long as the light is on. Once built, the team turned to Gufeng Wang at North Carolina State University to measure how well the nanosubs moved. "We had used scanning tunnelling microscopy and fluorescence microscopy to watch our cars drive, but that wouldn't work for the submersibles," explained Tour. "They would drift out of focus pretty quickly." The North Carolina team sandwiched a drop of diluted acetonitrile liquid containing a few nanosubs between two slides, then used a custom confocal fluorescence microscope to hit it from opposite sides with both ultraviolet light (for the motor) and a red laser (for the pontoons). The microscope's laser defined a column of light in the solution, in which tracking occurred, García-López said: "That way, the NC State team could guarantee it was analysing only one molecule at a time." The team hopes future nanosubs will be able to carry cargoes for medical and other purposes. "There's a path forward," García-López said. "This is the first step, and we've proven the concept. Now we need to explore opportunities and potential applications."Nanosubmarines powered by light
Read More........

Powering the next billion devices with Wi-Fi

Wireless LANUniversity of Washington engineers have developed a novel technology that uses a Wi-Fi router -- a source of ubiquitous but untapped energy in indoor environments -- to power devices. The Power Over Wi-Fi (PoWiFi) system is one of the most innovative and game-changing technologies of the year, according to Popular Science, which included it in the magazine's annual "Best of What's New" awards announced Wednesday. The technology attracted attention earlier this year when researchers published an online paper showing how they harvested energy from Wi-Fi signals to power a simple temperature sensor, a low-resolution grayscale camera and a charger for a Jawbone activity tracking bracelet. The final paper will be presented next month at the Association for Computing Machinery's CoNEXT 2015 conference in Heidelberg, Germany, on emerging networking experiments and technologies. "For the first time we've shown that you can use Wi-Fi devices to power the sensors in cameras and other devices," said lead author Vamsi Talla, a UW electrical engineering doctoral student. "We also made a system that can co-exist as a Wi-Fi router and a power source -- it doesn't degrade the quality of your Wi-Fi signals while it's powering devices." PoWiFi could help enable development of the Internet of Things, where small computing sensors are embedded in everyday objects like cell phones, coffee makers, washing machines, air conditioners, mobile devices, allowing those devices to "talk" to each other. But one major challenge is how to energize those low-power sensors and actuators without needing to plug them into a power source as they become smaller and more numerous. The team of UW computer science and electrical engineers found that the peak energy contained in untapped, ambient Wi-Fi signals often came close to meeting the operating requirements for some low-power devices. But because the signals are sent intermittently, energy "leaked" out of the system during silent periods. The team fixed that problem by optimizing a router to send out superfluous "power packets" on Wi-Fi channels not currently in use -- essentially beefing up the Wi-Fi signal for power delivery -- without affecting the quality and speed of data transmission. The team also developed sensors that can be integrated in devices to harvest the power. In their proof-of-concept experiments, the team demonstrated that the PoWiFi system could wire-lessly power a gray-scale, low-power Omnivision VGA camera from 17 feet away, allowing it to store enough energy to capture an image every 35 minutes. It also re-charged the battery of a Jawbone Up24 wearable fitness tracker from zero to 41 per cent in 2.5 hours. The researchers also tested the PoWiFi system in six homes. Users typically didn't notice deterioration in web page loading or video streaming experiences, showing the technology could successfully deliver power via Wi-Fi in real-world conditions without degrading network performance. Although initial experiments harvested relatively small amounts of power, the UW team believes there's opportunity for make the PoWiFi system more efficient and robust. "In the future, PoWi-Fi could leverage technology power scaling to further improve the efficiency of the system to enable operation at larger distances and power numerous more sensors and applications," said co-author Shyam Gollakota, assistant professor of computer science and engineering. Source: ArticleSource: flickr.com
Read More........