Southern right whales are having babies less often, but why?

For decades, southern right whales have been celebrated as one of conservation’s success stories.

Once driven to the brink of extinction by commercial whaling, southern right whales slowly returned to Australian coastlines through the late 20th century. Their recovery reflected the power of international protection, marine sanctuaries and long-term science working together.

But our new research shows this success story is changing. We drew on more than 30 years of continuous shore-based monitoring of southern right whales in the Great Australian Bight, from within the Yalata Indigenous Protected Area in South Australia. We found clear evidence whales are having calves less often, with the average calving interval increasing for 3 to 4 years. This means the number of calves being born has slowed over the past decade.

This decline appears closely linked to climate-driven changes in the Southern Ocean — similar patterns are now being observed across the southern hemisphere.

More than 3 decades of photos

Our study analysed photo-identification data collected by researchers between 1991 and 2024 from a major calving area in the Great Australian Bight. Each whale is identified using its unique pattern of callosities — the hard patches of skin on its head that remain throughout its life.

This allows individual whales to be tracked across decades, providing rare insight into long-term population dynamics and how these change over time. Photo-identification is a globally accepted method used for whale population assessments. By tracking known individuals over time, researchers can directly measure their reproductive histories.

Long-term datasets like this are rare — and that is precisely what makes them so powerful. The Australian Right Whale Research Program at Flinders University is one of the longest continuous photo-identification studies of any whale species in the world. It has used the same methods over decades. In the context of climate change, where impacts often emerge slowly and unevenly, this long-term evidence is essential.

What we found

Since around 2015, female southern right whales have not given birth as often. These extended calving intervals mean fewer calves are being born overall, and this reduces population growth over time.

For a long-lived species that reproduces slowly, this matters. Small changes in reproductive rates impacts population growth. The slowdown in reproduction signals a shift away from the recovery seen in previous decades.

A signal from the south

The cause of this change is not immediately visible from Australia’s coastline. Southern right whales spend much of their lives feeding thousands of kilometres away in the Southern Ocean, where they rely on the cold, nutrient-rich waters created by Antarctic sea ice. These waters support krill and prey that are crucial for whales to build up the energy reserves they need for pregnancy and lactation.

Over the past decade, the ocean has warmed, the ice is melting and there have been dramatic shifts in food availability weather patterns. Our analysis shows longer calving intervals coincide with these environmental changes, suggesting the impacts of climate change on conditions in the Southern Ocean are linked to whales having fewer calves.

A global pattern emerges

Importantly, this is not just an Australian story.

Similar trends are being reported in southern right whale populations off South America and South Africa, where researchers have documented reduced calving rates, whales in poor condition and environmental changes.

Southern right whales are a sentinel species: animals whose health reflects broader changes in their environment. Our findings signal deeper disruption in ocean systems that also support fisheries, affect how the climate is regulated and influence marine plants, animals and other species.

Southern right whales are long-lived, reproduce slowly, and rely on energy-rich feeding grounds. This makes them particularly vulnerable to climate-driven changes in prey.

What needs to change?

Protecting the Southern Ocean and its increasingly vulnerable natural ecosystems demands urgent collective climate action. This must bridge disciplines, industries, governments and interconnected regions.

This action should include the expansion of sanctuaries across the migratory ranges of threatened species. It should also limit threats, such as whales being struck by ships, getting entangled in ropes and being exposed to noise pollution.

The future of southern right whales is likely to be closely tied to the management of krill harvesting and addressing climate change.

We need to listen — and act — while there is still time.

The author would like to acknowledge the contribution of research collaborators and all of the people involved in the long-term research program that make this work possible.The Conversation

Claire Charlton, Leader of Australian Right Whale Research Program, College of Science and Engineering, Flinders University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More........

Why your brain has to work harder in an open-plan office than private offices: study

Since the pandemic, offices around the world have quietly shrunk. Many organisations don’t need as much floor space or as many desks, given many staff now do a mix of hybrid work from home and the office.

But on days when more staff are required to be in, office spaces can feel noticeably busier and noisier. Despite so much focus on getting workers back into offices, there has been far less focus on the impacts of returning to open-plan workspaces.

Now, more research confirms what many suspected: our brains have to work harder in open-plan spaces than in private offices.

What the latest study tested

In a recently published study, researchers at a Spanish university fitted 26 people, aged in their mid-20s to mid-60s, with wireless electroencephalogram (EEG) headsets. EEG testing can measure how hard the brain is working by tracking electrical activity through sensors on the scalp.

Participants completed simulated office tasks, such as monitoring notifications, reading and responding to emails, and memorising and recalling lists of words.

Each participant was monitored while completing the tasks in two different settings: an open-plan workspace with colleagues nearby, and a small enclosed work “pod” with clear glazed panels on one side.

The researchers focused on the frontal regions of the brain, responsible for attention, concentration, and filtering out distractions. They measured different types of brain waves.

As neuroscientist Susan Hillier explains in more detail, different brain waves reveal distinct mental states:

  • “gamma” is linked with states or tasks that require more focused concentration
  • “beta” is linked with higher anxiety and more active states, with attention often directed externally
  • “alpha” is linked with being very relaxed, and passive attention (such as listening quietly but not engaging)
  • “theta” is linked with deep relaxation and inward focus
  • and “delta” is linked with deep sleep.

The Spanish study found that the same tasks done inside the enclosed pod vs the open-plan workspace produced completely opposite patterns.

It takes effort to filter out distractions

In the work pod, the study found beta waves – associated with active mental processing – dropped significantly over the experiment, as did alpha waves linked to passive attention and overall activity in the frontal brain regions.

This meant people’s brains needed progressively less effort to sustain the same work.

The open-plan office testing showed the reverse.

Gamma waves, linked to complex mental processing, climbed steadily. Theta waves, which track both working memory and mental fatigue, increased. Two key measures also rose significantly: arousal (how alert and activated the brain is) and engagement (how much mental effort is being applied).

In other words, in the open-plan office participants’ brains had to work harder to maintain performance.

Even when we try to ignore distractions, our brain has to expend mental effort to filter them out.

In contrast, the pod eliminated most background noise and visual disruptions, allowing participant’s brains to work more efficiently.

Researchers also found much wider variability in the open office. Some people’s brain activity increased dramatically, while others showed modest changes. This suggests individual differences in how distracting we find open-plan spaces.

With only 26 participants, this was a relatively small study. But its findings echo a significant body of research from the past decade.

What past research has shown

In our 2021 study, my colleagues and I found a significant causal relationship between open-plan office noise and physiological stress. Studying 43 participants in controlled conditions – using heart rate, skin conductivity and AI facial emotion recognition – we found negative mood in open plan offices increased by 25% and physiological stress by 34%.

Another study showed background conversations and noisy environments can degrade cognitive task performance and increase distraction for workers.

And a 2013 analysis of more than 42,000 office workers in the United States, Finland, Canada and Australia found those in open-plan offices were less satisfied with their work environment than those in private offices. This was largely due to increased, uncontrollable noise and lack of privacy.

Just as we now recognise poorly designed chairs cause physical strain, years of research has shown how workspace design can result in cognitive strain.

What to do about it

The ability to focus and concentrate without interruption and distraction is a fundamental requirement for modern knowledge work.

Yet the value of uninterrupted work continues to be undervalued in workplace design.

Creating zones where workers can match their workplace environment to the task is essential.

Responding to having more staff doing hybrid work post-pandemic, LinkedIn redesigned its flagship San Francisco office. LinkedIn halved the number of workstations in open plan areas, instead experimenting with 75 types of work settings, including work areas for quiet focus.

For organisations looking to look after their workers’ brains, there are practical measures to consider. These include setting up different work zones, acoustic treatments and sound-masking technologies, and thoughtfully placed partitions to reduce visual and auditory distractions.

While adding those extra features in may cost more upfront than an open plan office, they can be worth it. Research has shown the significant hidden toll of poor office design on productivity, health and employee retention.

Providing workers with more choice in how much they’re exposed to noise and other interruptions is not a luxury. To get more done, with less strain on our brains, better design at work should be seen as a necessity.The Conversation

Libby (Elizabeth) Sander, MBA Director & Associate Professor of Organisational Behaviour, Bond Business School, Bond University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More........