Samsung's 600-Mile-Range Batteries That Charge in 9 Minutes Ready for Production/Sale Next Year

A mock-up design of Samsung SDI’s solid-state battery – credit, Samsung, released

In late October, Samsung announced that it was preparing to take its long-anticipated solid-state batteries to market with a trilateral agreement between itself, BMW, and American battery expert Solid Power.

It was January of last year that industry outlets began to get some of the promises that all-solid-state batteries (ASSBs) developed by Samsung SDI would bring. With an energy density of 500 watt-hours per kilogram, they’re twice as dense as conventional lithium-ion batteries.

Samsung claimed they were smaller, lighter, and safer, capable of driving 600 miles, and charging with
in 9 minutes. Typically, a lithium-ion battery pack in a modern EV charges from 10% to 80% in around 45 minutes, and has a limit of around 300 miles of range.

“Samsung SDI’s preparations for mass-producing next-generation products of various form factors such as an all-solid-state battery are well underway as we are set to lead the global battery market with our unrivaled ‘super-gap’ technology,” said Samsung SDI CEO Yoon-ho Choi.

ASSB cells use solid electrolyte instead of liquid electrolyte found in a lithium-ion battery. They offer superior safety, as they aren’t flammable, and last for 20 years, or 2,000 charge-discharges, equating to 1.2 million miles.

Under the trilateral agreement, Samsung will supply ASSB cells featuring the solid electrolyte developed by Solid Power to the German automotive group BMW, which will then develop modules and packs for ASSB cells to fit into their next-generation evaluation vehicles, expected in late 2026.

Metal Tech News reported in January that ASSBs will also debut in some smaller Samsung devices during 2026, including the Galaxy Ring fitness tracker, as a way of testing the new power supplies in the real world before incorporating them into smartphones, laptops, and other devices.Samsung’s ASSBs use a silver-carbon layer as the anode and a nickel-manganese-cobalt material for the cathode. Silver is not only the most electrically conductive metal available, it’s also substantially more plentiful in the Earth’s crust than lithium. Samsung's 600-Mile-Range Batteries That Charge in 9 Minutes Ready for Production/Sale Next Year
Read More........

New Airship-style Wind Turbine Can Find Gusts at Higher Altitudes for Constant, Cheaper Power

The S1500 from Sawes – credit, handout

A new form of wind energy is under development that promises more consistent power and lower deployment costs by adapting the design of a dirigible, or zeppelin.

Suspended 1,000 feet up where the wind is always blowing, it presents as an ideal energy source for rural communities, disaster areas, or places where wind turbines aren’t feasible to build.

The design has grown through multilateral innovation by dozens of engineers and scientists, but an MIT startup called Altaeros, and Beijing-based start-up Sawes Energy Technology have taken it to market. Both have already produced prototypes that boast some serious performance.


In 2014, Altaeros’ Buoyant Air Turbine (or BAT) was ready for commercial deployment in rural Alaska, where diesel generators are still heavily relied on for power. Its 35-foot-long inflatable shell, made of the same materials as modern blimps, provided 30 kilowatts of wind energy.

As a power provider, though, Altaeros could never get off the ground, and now has adopted much of its technology to the provision of wireless telecommunication services for civil and commercial contracting.

Heir to Altaeros’ throne, Sawes has managed to greatly exceed the former’s power generation, and now hopes to achieve nothing less than contributing a Chinese solution to the world’s energy transition.

Altaeros’ BAT – credit, Altaeros, via MIT

During a mid-September test, Sawes’ airship-like S1500, as long and wide as a basketball court and as tall as a 13-storey building, generated 1 megawatt of power which it delivered through its tether cable down to a generator below.

Conducted in the windy, western desert province of Xinjiang, the S1500 surpassed the capabilities of its predecessor turbine by 10-times, which achieved 100 kilowatts in October of last year.

Dun Tianrui, the company’s CEO and chief designer, called the megawatt-mark “a critical step towards putting the product into real-world use” which would happen next year when the company expects to begin mass production.

At the same time, the Sawes R&D team is looking into advances in materials sciences and optimization of manufacturing that will ensure the cost of supplying that megawatt to rural grids will be around $0.01 per kilowatt-hour—literally 100-times cheaper than what was theorized as the cost for Altaeros’ model from 10 years ago.

One of the major positives of the BAT is that by floating 1,000 to 2,000 feet above the ground, they render irrelevant the main gripe and failing of wind energy—that some days the wind doesn’t blow. A conventional turbine reaches only between 100 and 300 feet up, putting birds at risk as well as not collecting all the air that’s blowing over the landscape.

Sawes’ unit is about 40% cheaper to build and deploy than a normal turbine, presenting the opportunity for a 30% lower cost for buying the wind energy.According to a piece in the Beijing Daily, reported on by South China Morning Post, challenges remain before commercial deployment can begin, including what to do during storms, and whether or not it will compete in communities with existing coal-power supply. New Airship-style Wind Turbine Can Find Gusts at Higher Altitudes for Constant, Cheaper Power
Read More........