First Human Cornea Transplant Using 3D Printed, Lab-Grown Tissue Restores Sight in a ‘Game Changer’ for Millions Who are Blind

File photo – credit: Maria Maximova

The first successful human implant of a 3D-printed cornea made from human eye cells cultured in a laboratory has restored a patient’s sight.

The North Carolina-based company that developed the cornea described the procedure as a ‘world first’—and a major milestone toward its goal of alleviating the lack of available donor tissue and long wait-times for people seeking transplants.

According to Precise Bio, its robotic bio-fabrication approach could potentially turn a single donated cornea into hundreds of lab-grown grafts, at a time when there’s currently only one available for an estimated 70 patients who need one to see.

“This achievement marks a turning point for regenerative ophthalmology—a moment of real hope for millions living with corneal blindness,” Aryeh Batt, Precise Bio’s co-founder and CEO, said in a statement.

“For the first time, a corneal implant manufactured entirely in the lab from cultured human corneal cells, rather than direct donor tissue, has been successfully implanted in a patient.”

The company said the transplant was performed Oct. 29 in one eye of a patient who was considered legally blind.

“This is a game changer. We’ve witnessed a cornea created in the lab, from living human cells, bring sight back to a human being,” said Dr. Michael Mimouni, director of the cornea unit at Rambam Medical Center in Israel, who performed the procedure.

“It was an unforgettable moment—a glimpse into a future where no one will have to live in darkness because of a shortage of donor tissue.”

Dubbed PB-001, the implant is designed to match the optical clarity, transparency and bio-mechanical properties of a native cornea. Previously tested in animal models, the company said its graft is capable of integrating with a patient’s own tissue.

The outer layer of the eye—covering the iris and pupil—can end up clouding a person’s vision following injuries, infections, scarring and other conditions. PB-001 is currently being tested in a single-arm phase 1 trial in Israel, which aims to enroll between 10 and 15 participants with excess fluid buildups in the cornea due to dysfunction within its inner cell layers.

Precise Bio said it plans to announce top-line results from the study in the second half of 2026, tracking six-month efficacy outcomes.

The corneas are designed to be compatible with current surgery hardware and workflows. Shipped under long-term cryopreservation, it is delivered preloaded on standard delivery devices and unrolls during implantation to form a natural corneal shape.

“PB-001 has the potential to offer a new, standardized solution to one of ophthalmology’s most urgent needs—reliable, safe, and effective corneal replacement,” said Anthony Atala, M.D., co-founder of Precise Bio and director of the Wake Forest Institute for Regenerative Medicine.


“The ability to produce patient-ready tissue on demand could lead the way towards reshaping transplant medicine as we know it.”(Edited from original article by Conor Hale) First Human Cornea Transplant Using 3D Printed, Lab-Grown Tissue Restores Sight in a ‘Game Changer’ for Millions Who are Blind
Read More........

Scientists Document Over 16,000 Footprints in the World’s Most Extensive Dinosaur Tracksite

The Carreras Pampas trackways – credit, Raúl Esperante

In Bolivia, the largest number of dinosaur footprints ever recorded in a single spot is yielding fascinating insight on how these prehistoric animals moved in a way that bones just can’t.

16,600 footprints, forming dozens of “trackways,” have been so far documented on what would have been the muddy floor of a waterway along what is now the coastline in Bolivia’s Carreras Pampas.

If a skeleton shows what a dinosaur could do, tracks show what they actually did; and while bones may be transported from the location of death through environmental events, a footprint provides perfect evidence of where exactly a dinosaur was at a given time.


These and other aspects of the tracks are why this site in the Torotoro National Park in Bolivia has paleontologists so excited.

The tracks were made by theropods, the bipedal meat-eating dinosaurs that included T. rex. Some were isolated, some moved back and forth, some were made while the animals were swimming or wading, and yet more may show theropods moving in groups.


“Everywhere you look on that rock layer at the site, there are dinosaur tracks,” said study coauthor Dr. Jeremy McLarty, an associate professor of biology and director of the Dinosaur Science Museum and Research Center at Southwestern Adventist University in Texas.

Speaking with CNN, Dr. McLarty said that most of the tracks were traveling north-northwest or southeast, had been made over a short period of time, and may have been part of a long stretch of open country used by these animals in migratory routes to as far south as Argentina.

– credit, Raúl Esperante

The tracks can show so much about the animal that made them. The size of the prints can estimate the size of the theropod, while the space between prints can suggest the speed of their movement. As a trackway turns and bends, researchers can estimate the hip flexibility of the dinosaur, while traces of a tail dragging behind or the individual impression of each toe shows various gaits that might infer an injury, a posture, or the type of terrain that was present when the tracks were made.

Of their age, Dr. McLarty and his team estimate they were made between 100 and 66 million years ago at the end of the Cretaceous Period.

Several paleontologists spoke with CNN who weren’t involved in the trackway analysis, published in PLOS One, and they expressed their supreme eagerness to learn more about the various theropod species which made the imprints, some of which could have been as short as two-feet tall at the hip, while others might have been three-feet tall.“Tracks don’t move,” McLarty said. “When you visit Carreras Pampas, you know you are standing where a dinosaur walked.” Scientists Document Over 16,000 Footprints in the World’s Most Extensive Dinosaur Tracksite
Read More........