New Ultrasonic Imaging System Can Detect Deadly Defects in All Types of Concrete

– credit Fujikawa et al. with background / SWNS

If a physician needs to see what’s gone wrong inside a human body, it’s easy enough to order an ultrasound scan. But if the structural engineer wants to do the same in a block of concrete, his options are of limited effectiveness.

The range of materials that concrete contains, such as stone, clay, chalk, slate, iron ore, and sand, scatters normal sound waves, making clear images difficult to obtain.

Now, Japanese and American scientists have teamed up to develop a system that can identify interior defects in concrete buildings and bridges without destroying their structure.

Team members explain in a news release that their method sends sound waves into the material and captures the waves that echo back to create images of what’s inside, just like an ultrasound.

“In our approach, the ultrasonic wave is broadband, using a wide range of ultrasonic frequencies rather than operating around a single, fixed frequency,” said Professor Yoshikazu Ohara from Tohoku University in Japan.

“The receiver is capable of accepting an even broader range of frequencies. By automatically adapting the frequency to the material, our system improves the contrast between defects and background material in concrete.”

Tohoku and his colleagues joined the Los Alamos National Laboratory in New Mexico, and Texas A&M University to create the system.

A chief challenge is that it’s hard to know which frequencies of sound waves will survive traveling through concrete, as different material therein may interfere with different wavelengths.

To accommodate the uncertainty, the team used two devices: one to generate a wide range of frequencies to send into the material and another, called a vibrometer, to capture the outcoming waves.

The system, described in the journal Applied Physics Letters, can handle a wide range of frequencies, which means that even if ultrasonic waves are scattered by materials in the concrete, those that do make it through are still detected, regardless of what frequency they are.

“As the concrete filters out certain frequencies, the laser Doppler vibrometer simply captures whatever frequencies remain,” said Professor Ohara. “Unlike conventional systems, we don’t have to swap transducers or adjust the frequency beforehand. The system adapts automatically.”

The result is a high-resolution 3D image of the defect and its location in the concrete.For a repair planner or field technician, this provides ‘concrete’ information: how deep the defect is from the surface, how large it is, and how it extends in three dimensions, making it possible to plan repairs more efficiently. New Ultrasonic Imaging System Can Detect Deadly Defects in All Types of Concrete
Read More........

Japanese researchers successfully regenerate bone using stem cells


IANS Photo

New Delhi, (IANS): A team of researchers from Japan has successfully treated spinal fractures in animal models using stem cells from fatty tissue.

The team from the Osaka Metropolitan University used stem cells extracted from adipose -- the body’s fatty tissue -- to treat spine fractures in rats similar to those caused by osteoporosis in humans.

These cells offer the advantages of being easy to collect, even from elderly individuals, and causing little stress to the body, suggesting a non-invasive way of treating bone diseases.

Bone regeneration and strength were significantly improved in rats transplanted with the adipose tissue (ADSCs).

The genes involved in bone formation and regeneration were also activated. The study was published in Bone and Joint Research.

“This study has revealed the potential of bone differentiation spheroids using ADSCs for the development of new treatments for spinal fractures,” said Yuta Sawada, a student at the varsity's Graduate School of Medicine.

“Since the cells are obtained from fat, there is little burden on the body, ensuring patient safety. This simple and effective method can treat even difficult fractures and may accelerate healing,” added Dr. Shinji Takahashi.

Osteoporosis is a disease that causes bones to become brittle and prone to fractures. Among osteoporosis-related fractures, compression fractures of the spine -- known as osteoporotic vertebral fractures -- are the most common type of fracture and pose a serious problem, leading to a need for long-term care and a significant decline in quality of life.

The team used stem cells, which are multipotent, meaning that they can be differentiated into many different cell types.

They developed ADSCs into bone-differentiated spheroids -- three-dimensional spherical clusters -- and combined it with beta-tricalcium phosphate, a material widely used for bone reconstruction, to successfully treat rats with spinal fractures.“This technique is expected to become a new treatment that helps extend the healthy life of patients,” Takahashi said. Japanese researchers successfully regenerate bone using stem cells | MorungExpress | morungexpress.com
Read More........