A Blazar in the Early Universe: Details Revealed in Galaxy's Jet 12.8 Billion Light-Years from Earth

Credit: Spingola et al.; Bill Saxton, NRAO/AUI/NSF.

The supersharp radio "vision" of the National Science Foundation's Very Long Baseline Array (VLBA) has revealed previously unseen details in a jet of material ejected at three-quarters the speed of light from the core of a galaxy some 12.8 billion light-years from Earth. The galaxy, dubbed PSO J0309+27, is a blazar, with its jet pointed toward Earth, and is the brightest radio-emitting blazar yet seen at such a distance. It also is the second-brightest X-ray emitting blazar at such a distance. 

In this image, the brightest radio emission comes from the galaxy's core, at bottom right. The jet is propelled by the gravitational energy of a supermassive black hole at the core, and moves outward, toward the upper left. The jet seen here extends some 1,600 light-years, and shows structure within it.

At this distance, PSO J0309+27 is seen as it was when the universe was less than a billion years old, or just over 7 percent of its current age.

An international team of astronomers led by Cristiana Spingola of the University of Bologna in Italy, observed the galaxy in April and May of 2020. Their analysis of the object's properties provides support for some theoretical models for why blazars are rare in the early universe. The researchers reported their results in the journal Astronomy & Astrophysics.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Contacts and sources: 
Dave Finley
The National Radio Astronomy Observatory i

Read More........

Black Hole in 'Mirachs Ghost' Galaxy Hints at How It Was Born

Credit: Cardiff University

Astronomers zoom in on black hole with one of the lowest masses ever observed in nearby "ghost" galaxy.

"On the left is shown a color composite Hubble Space Telescope image of the centre of `Mirachs Ghost'. On the right is shown the new ALMA image of this same region, revealing the distribution of the cold, dense gas that swirls around this centre of this object in exquisite detail."

A research team led by Cardiff University scientists say they are closer to understanding how a supermassive black hole (SMBH) is born thanks to a new technique that has enabled them to zoom in on one of these enigmatic cosmic objects in unprecedented detail.

Scientists are unsure as to whether SMBHs were formed in the extreme conditions shortly after the big bang, in a process dubbed a 'direct collapse', or were grown much later from 'seed' black holes resulting from the death of massive stars.

If the former method were true, SMBHs would be born with extremely large masses - hundreds of thousands to millions of times more massive than our Sun - and would have a fixed minimum size.

If the latter were true then SMBHs would start out relatively small, around 100 times the mass of our Sun, and start to grow larger over time by feeding on the stars and gas clouds that live around them.

Astronomers have long been striving to find the lowest mass SMBHs, which are the missing links needed to decipher this problem.

In a study published today, the Cardiff-led team has pushed the boundaries, revealing one of the lowest-mass SMBHs ever observed at the centre of a nearby galaxy, weighing less than one million times the mass of our sun.

The SMBH lives in a galaxy that is familiarly known as "Mirach's Ghost", due to its close proximity to a very bright star called Mirach, giving it a ghostly shadow.

The findings were made using a new technique with the Atacama Large Millimeter/submillimeter Array (ALMA), a state-of-the-art telescope situated high on the Chajnantor plateau in the Chilean Andes that is used to study light from some of the coldest objects in the Universe.

"The SMBH in Mirach's Ghost appears to have a mass within the range predicted by 'direct collapse' models," said Dr Tim Davis from Cardiff University's School of Physics and Astronomy.

"We know it is currently active and swallowing gas, so some of the more extreme 'direct collapse' models that only make very massive SMBHs cannot be true.

"This on its own is not enough to definitively tell the difference between the 'seed' picture and 'direct collapse' - we need to understand the statistics for that - but this is a massive step in the right direction."

Black holes are objects that have collapsed under the weight of gravity, leaving behind small but incredibly dense regions of space from which nothing can escape, not even light.

An SMBH is the largest type of black hole that can be hundreds of thousands, if not billions, of times the mass of the Sun.

It is believed that nearly all large galaxies, such as our own Milky Way, contain an SMBH located at its centre.

"SMBHs have also been found in very distant galaxies as they appeared just a few hundred million years after the big bang", said Dr Marc Sarzi, a member of Dr. Davis' team from the Armagh Observatory & Planetarium.

"This suggest that at least some SMBHs could have grown very massive in a very short time, which is hard to explain according to models for the formation and evolution of galaxies."

"All black holes grow as they swallow gas clouds and disrupt stars that venture too close to them, but some have more active lives than others."

"Looking for the smallest SMBHs in nearby galaxies could therefore help us reveal how SMBHs start off," continued Dr. Sarzi.

In their study, the international team used brand new techniques to zoom further into the heart of a small nearby galaxy, called NGC404, than ever before, allowing them to observe the swirling gas clouds that surrounded the SMBH at its centre.

The ALMA telescope enabled the team to resolve the gas clouds in the heart of the galaxy, revealing details only 1.5 light years across, making this one of the highest resolution maps of gas ever made of another galaxy.

Being able to observe this galaxy with such high resolution enabled the team to overcome a decade's worth of conflicting results and reveal the true nature of the SMBH at the galaxy's centre.

"Our study demonstrates that with this new technique we can really begin to explore both the properties and origins of these mysterious objects," continued Dr Davis.

"If there is a minimum mass for a supermassive black hole, we haven't found it yet."

###

The results of the study have been published today in the Monthly Notices of the Royal Astronomical Society.

Contacts and sources: Michael Bishop, Cardiff University

Read More........

Possible Link Between Primordial Black Holes and Dark Matter

Dark matter is a mysterious substance composing most of the material universe, now widely thought to be some form of massive exotic particle. An intriguing alternative view is that dark matter is made of black holes formed during the first second of our universe's existence, known as primordial black holes. Dark matter is a hypothetical type of matter composing the approximately 27% of the mass and energy in the observable universe that is not accounted for by dark energy, baryonic matter, and neutrinos. The name refers to the fact that it does not emit or interact with electromagnetic radiation, such as light, and is thus invisible to the entire electromagnetic spectrum. The most widely accepted hypothesis on the form for dark matter is that it is composed of weakly interacting massive particles (WIMPs) that interact only through gravity and the weak force. Now a scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, suggests that this interpretation aligns with our knowledge of cosmic infrared and X-ray background glows and may explain the unexpectedly high masses of merging black holes detected last year. "This study is an effort to bring together a broad set of ideas and observations to test how well they fit, and the fit is surprisingly good," said Alexander Kashlinsky, an astrophysicist at NASA Goddard. "If this is correct, then all galaxies, including our own, are embedded within a vast sphere of black holes each about 30 times the sun's mass." In 2005, Kashlinsky led a team of astronomers using NASA's Spitzer Space Telescope to explore the background glow of infrared light in one part of the sky. The researchers reported excessive patchiness in the glow and concluded it was likely caused by the aggregate light of the first sources to illuminate the universe more than 13 billion years ago. Follow-up studies confirmed that this cosmic infrared background (CIB) showed similar unexpected structure in other parts of the sky. This image from NASA's Spitzer Space Telescope shows an infrared view of a sky area in the constellation Ursa Major. After masking out all known stars, galaxies and artifacts and enhancing what's left, an irregular background glow appears. This is the cosmic infrared background (CIB); lighter colors indicate brighter areas. The CIB glow is more irregular than can be explained by distant unresolved galaxies, and this excess structure is thought to be light emitted when the universe was less than a billion years old. Scientists say it likely originated from the first luminous objects to form in the universe, which includes both the first stars and black holes.
Credits: NASA/JPL-Caltech/A. Kashlinsky (Goddard)
In 2013, another study compared how the cosmic X-ray background (CXB) detected by NASA's Chandra X-ray Observatory compared to the CIB in the same area of the sky. The first stars emitted mainly optical and ultraviolet light, which today is stretched into the infrared by the expansion of space, so they should not contribute significantly to the CXB. Yet the irregular glow of low-energy X-rays in the CXB matched the patchiness of the CIB quite well. The only object we know of that can be sufficiently luminous across this wide an energy range is a black hole. The research team concluded that primordial black holes must have been abundant among the earliest stars, making up at least about one out of every five of the sources contributing to the CIB. The nature of dark matter remains one of the most important unresolved issues in astrophysics. Scientists currently favor theoretical models that explain dark matter as an exotic massive particle, but so far searches have failed to turn up evidence these hypothetical particles actually exist. NASA is currently investigating this issue as part of its Alpha Magnetic Spectrometer and Fermi Gamma-ray Space Telescope missions. "These studies are providing increasingly sensitive results, slowly shrinking the box of parameters where dark matter particles can hide," Kashlinsky said. "The failure to find them has led to renewed interest in studying how well primordial black holes -- black holes formed in the universe's first fraction of a second -- could work as dark matter." Physicists have outlined several ways in which the hot, rapidly expanding universe could produce primordial black holes in the first thousandths of a second after the Big Bang. The older the universe is when these mechanisms take hold, the larger the black holes can be. And because the window for creating them lasts only a tiny fraction of the first second, scientists expect primordial black holes would exhibit a narrow range of masses. On Sept. 14, gravitational waves produced by a pair of merging black holes 1.3 billion light-years away werecaptured by the Laser Interferometer Gravitational-Wave Observatory (LIGO) facilities in Hanford, Washington, and Livingston, Louisiana. This event marked the first-ever detection of gravitational waves as well as the first direct detection of black holes. The signal provided LIGO scientists with information about the masses of the individual black holes, which were 29 and 36 times the sun's mass, plus or minus about four solar masses. These values were both unexpectedly large and surprisingly similar. "Depending on the mechanism at work, primordial black holes could have properties very similar to what LIGO detected," Kashlinsky explained. "If we assume this is the case, that LIGO caught a merger of black holes formed in the early universe, we can look at the consequences this has on our understanding of how the cosmos ultimately evolved." Primordial black holes, if they exist, could be similar to the merging black holes detected by the LIGO team in 2014. This computer simulation shows in slow motion what this merger would have looked like up close. The ring around the black holes, called an Einstein ring, arises from all the stars in a small region directly behind the holes whose light is distorted by gravitational lensing. The gravitational waves detected by LIGO are not shown in this video, although their effects can be seen in the Einstein ring. Gravitational waves traveling out behind the black holes disturb stellar images comprising the Einstein ring, causing them to slosh around in the ring even long after the merger is complete. Gravitational waves traveling in other directions cause weaker, shorter-lived sloshing everywhere outside the Einstein ring. If played back in real time, the movie would last about a third of a second. In his new paper, published May 24 in The Astrophysical Journal Letters, Kashlinsky analyzes what might have happened if dark matter consisted of a population of black holes similar to those detected by LIGO. The black holes distort the distribution of mass in the early universe, adding a small fluctuation that has consequences hundreds of millions of years later, when the first stars begin to form. For much of the universe's first 500 million years, normal matter remained too hot to coalesce into the first stars. Dark matter was unaffected by the high temperature because, whatever its nature, it primarily interacts through gravity. Aggregating by mutual attraction, dark matter first collapsed into clumps called minihaloes, which provided a gravitational seed enabling normal matter to accumulate. Hot gas collapsed toward the minihaloes, resulting in pockets of gas dense enough to further collapse on their own into the first stars. Kashlinsky shows that if black holes play the part of dark matter, this process occurs more rapidly and easily produces the lumpiness of the CIB detected in Spitzer data even if only a small fraction of minihaloes manage to produce stars. As cosmic gas fell into the minihaloes, their constituent black holes would naturally capture some of it too. Matter falling toward a black hole heats up and ultimately produces X-rays. Together, infrared light from the first stars and X-rays from gas falling into dark matter black holes can account for the observed agreement between the patchiness of the CIB and the CXB. Occasionally, some primordial black holes will pass close enough to be gravitationally captured into binary systems. The black holes in each of these binaries will, over eons, emit gravitational radiation, lose orbital energy and spiral inward, ultimately merging into a larger black hole like the event LIGO observed. "Future LIGO observing runs will tell us much more about the universe's population of black holes, and it won't be long before we'll know if the scenario I outline is either supported or ruled out," Kashlinsky said.Kashlinsky leads science team centered at Goddard that is participating in the European Space Agency'sEuclid mission, which is currently scheduled to launch in 2020. The project, named LIBRAE, will enable the observatory to probe source populations in the CIB with high precision and determine what portion was produced by black holes. Source: https://www.nasa.gov/

Read More........

Gravitational waves detected for the first time

Credits: R. Hurt/Caltech-JPL
In a historical scientific landmark, researchers have announced the first detection of gravitational waves, as predicted by Einstein's general theory of relativity 100 years ago. This major discovery opens a new era of astronomy.
For the first time, scientists have directly observed "ripples" in the fabric of spacetime called gravitational waves, arriving at the Earth from a cataclysmic event in the distant universe. This confirms a major prediction of Einstein’s 1915 general theory of relativity and opens an unprecedented new window onto the cosmos. The observation was made at 09:50:45 GMT on 14th September 2015, when two black holes collided. However, given the enormous distance involved and the time required for light to reach us, this event actually occurred some 1.3 billion years ago, during the mid-Proterozoic Eon. For context, this is so far back that multicellular life here on Earth was only just beginning to spread. The signal came from the Southern Celestial Hemisphere, in the rough direction of (but much further away than) the Magellanic Clouds. The two black holes were spinning together as a binary pair, turning around each other several tens of times a second, until they eventually collided at half the speed of light. These objects were 36 and 29 times the mass of our Sun. As their event horizons merged, they became one – like two soap bubbles in a bath. During the fraction of a second that this happened, three solar masses were converted to gravitational waves, and for a brief instant the event hit a peak power output 50 times
The gravitational waves were detected by both of the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA. The LIGO Observatories are funded by the National Science Foundation (NSF), and were conceived, built, and are operated by Caltech and MIT. The discovery was published yesterday in the journal Physical Review Letters.
that of the entire visible universe. Prof. Stephen Hawking told BBC News: "Gravitational waves provide a completely new way of looking at the Universe. The ability to detect them has the potential to revolutionise astronomy. This discovery is the first detection of a black hole binary system and the first observation of black holes merging. Apart from testing General Relativity, we could hope to see black holes through the history of the Universe. We may even see relics of the very early Universe during the Big Bang at some of the most extreme energies possible." "There is a Nobel Prize in it – there is no doubt," said Prof. Karsten Danzmann, from the Max Planck Institute for Gravitational Physics and Leibniz University in Hannover, Germany, who collaborated on the study. In an interview with the BBC, he claimed the significance of this discovery is on a par with the determination of the structure of DNA. "It is the first ever direct detection of gravitational waves; it's the first ever direct detection of black holes and it is a confirmation of General Relativity because the property of these black holes agrees exactly with what Einstein predicted almost exactly 100 years ago." "We found a beautiful signature of the merger of two black holes and it agrees exactly – fantastically – with the numerical solutions to Einstein equations ...

LIGO measurement of gravitational waves at the Hanford (left) and Livingston (right) detectors, compared to the theoretical predicted values.By Abbott et al. [CC BY 3.0]
it looked too beautiful to be true." "Scientists have been looking for gravitational waves for decades – but we’ve only now been able to achieve the incredibly precise technologies needed to pick up these very, very faint echoes from across the universe," said Danzmann. "This discovery would not have been possible without the efforts and the technologies developed by the Max Planck, Leibniz UniversitÀt, and UK scientists working in the GEO collaboration." Researchers at the LIGO Observatories were able to measure tiny and subtle disturbances the waves made to space and time as they passed through the Earth, with machines detecting changes just fractions of the width of an atom. At each observatory, the two-and-a-half-mile (4-km) long L-shaped LIGO interferometer uses laser light split into two beams that travel back and forth along tubes kept at a near-perfect vacuum. The beams are used to monitor the distance between mirrors precisely positioned at the ends of the arms. According to Einstein’s theory, the distance between the mirrors will change by an infinitesimal amount when gravitational waves pass by the detector. A change in the lengths of the arms smaller than one-ten-thousandth the diameter of a proton can be detected; equivalent to a human hair's diameter over three light years from Earth. "The Advanced LIGO detectors are a tour de force of science and technology, made possible by a truly exceptional international team of technicians, engineers, and scientists," says David Shoemaker of MIT. "We are very proud that we finished this NSF-funded project on time and on budget." "We spent years modelling the gravitational-wave emission from one of the most extreme events in the universe: pairs of massive black holes orbiting with each other and then merging. And that’s exactly the kind of signal we detected!" says Prof. Alessandra Buonanno, director at the Max Planck Institute for Gravitational Physics in Potsdam. "With this discovery, we humans are embarking on a marvellous new quest: the quest to explore the warped side of the universe – objects and phenomena that are made from warped spacetime," says Kip Thorne, Feynman Professor of Theoretical Physics at Caltech. "Colliding black holes and gravitational waves are our first beautiful examples." Advanced LIGO is among the most sensitive instruments ever built. During its next observing stage, it is expected to detect five more black hole mergers and to detect around 40 binary star mergers each year, in addition to an unknown number of more exotic gravitational wave sources, some of which may not be anticipated by current theory. Source: Futurtimeline.net
Read More........

NASA finding bolsters Indian theory on black hole


Bengaluru: An Indian astrophysicist says the recent observation by NASA scientists of giant flares of X-rays from a black hole confirms his theory that the so-called black holes are not "true" black holes but actually ultra hot balls of fire like our Sun. According to mainstream astrophysicists, extremely massive stars collapse into ultra compact objects called black holes whose gravitational field is so powerful that even light cannot escape from its imaginary boundary called "event horizon". Naturally, it came as a surprise when NASA announced last month that two of its space telescopes caught a huge burst of X-ray spewing out of a super massive black hole. What is unique about this giant flare is it appeared to be triggered by the eruption of a massive corona (charged particles) from the "black hole". If nothing can get out of a black hole, how did the corona come out of it? Abhas Mitra — till recently head of theoretical astrophysics at the Bhabha Atomic Research Centre (BARC) in Mumbai and currently Adjunct Professor at the Homi Bhabha National Institute — says NASA's observation has only bolstered his theory that "true" black holes do not exist and that the so-called black holes are in fact hot balls of magnetized plasma (ionized gas stripped of electrons). As a massive star contracts to the size of a black hole, the radiation trapped within the extremely hot star must exert an outward force to counter the gravitational pull resulting into a state of eternal contraction with an infinitesimally slow rate, Mitra explained. "Thus, instead of true black holes predicted by Einstein's theory, we proposed that massive stars end up as balls of fire — termed Magnetospheric Eternally Collapsing Objects or MECOs." Mitra, a distinguished alumnus of Mumbai University, said NASA's observation of giant X-ray flares from black hole could be most naturally explained by this MECO paradigm. MECOs possess accretion disks around them, something similar to the rings of Saturn, and also may be immersed in a sea of interstellar gases, he said. "Gas streams pulled inward by gravity get extremely hot by friction and may radiate X-rays." Mitra said relevant proofs behind this new paradigm have been published in leading peer-reviewed journals beginning 2000. "Our best example of a magnetised ball of fire is our Sun which is surrounded by a tenuous aura of plasma called Corona," he said. "Instabilities associated with this magnetised plasma result in intermittent eruptions from the Sun in the form of solar flares and coronal mass ejections." While a true black hole cannot possess any intrinsic magnetic field, there can be magnetic field associated with the disk or gas surrounding a MECO. Strong magnetic fields have indeed been detected around several so-called "black holes" suggesting that they are actually MECOs and not true black holes. The super strong flare witnessed by NASA, which appeared to originate right from the central part of MECO, is akin to the well-known phenomenon of 'Coronal Mass Ejection' from the Sun, Mitra said. "This latest astrophysical observation by NASA should prompt astrophysicists to take a closer look at the MECO paradigm," Mitra said. — IANS. Source: Article
Read More........

The Monster Of Monsters From The Dawn Of Time

This is an artist's impression of a quasar with a supermassive black hole in the distant universe.m Credit: Zhaoyu Li/NASA/JPL-Caltech/Misti Mountain Observatory
Scientists have discovered the brightest quasar in the early universe, powered by the most massive black hole yet known at that time. The international team led by astronomers from Peking University in China and from the University of Arizona announce their findings in the scientific journal Nature on Feb. 26. The discovery of this quasar, named SDSS J0100+2802, marks an important step in understanding how quasars, the most powerful objects in the universe, have evolved from the earliest epoch, only 900 million years after the Big Bang, which is thought to have happened 13.7 billion years ago. The quasar, with its central black hole mass of 12 billion solar masses and the luminosity of 420 trillion suns, is at a distance of 12.8 billion light-years from Earth. The discovery of this ultraluminous quasar also presents a major puzzle to the theory of black hole growth at early universe, according to Xiaohui Fan, Regents' Professor of Astronomy at the UA's Steward Observatory, who co-authored the study. "How can a quasar so luminous, and a black hole so massive, form so early in the history of the universe, at an era soon after the earliest stars and galaxies have just emerged?" Fan said. "And what is the relationship between this monster black hole and its surrounding environment, including its host galaxy? "This ultraluminous quasar with its supermassive black hole provides a unique laboratory to the study of the mass assembly and galaxy formation around the most massive black holes in the early universe." The quasar dates from a time close to the end of an important cosmic event that astronomers referred to as the "epoch of reionization": the cosmic dawn when light from the earliest generations of galaxies and quasars is thought to have ended the "cosmic dark ages" and transformed the universe into how we see it today. Discovered in 1963, quasars are the most powerful objects beyond our Milky Way galaxy, beaming vast amounts of energy across space as the supermassive black hole in their center sucks in matter from its surroundings. Thanks to the new generation of digital sky surveys, astronomers have discovered more than 200,000 quasars, with ages ranging from 0.7 billion years after the Big Bang to today. The newly discovered quasar SDSS J0100+2802 is the one with the most massive black hole and the highest luminosity among all known distant quasars. The background photo, provided by Yunnan Observatory, shows the dome of the
Credit: Zhaoyu Li/Shanghai Observatory
2.4meter telescope and the sky above it. Shining with the equivalent of 420 trillion suns, the new quasar is seven times brighter than the most distant quasar known (which is 13 billion years away). It harbors a black hole with mass of 12 billion solar masses, proving it to be the most luminous quasar with the most massive black hole among all the known high redshift (very distant) quasars. "By comparison, our own Milky Way galaxy has a black hole with a mass of only 4 million solar masses at its center; the black hole that powers this new quasar is 3,000 time heavier," Fan said. Feige Wang, a doctoral student from Peking University who is supervised jointly by Fan and Prof. Xue-Bing Wu at Peking University, the study's lead author, initially spotted this quasar for further study. "This quasar was first discovered by our 2.4-meter Lijiang Telescope in Yunnan, China, making it the only quasar ever discovered by a 2-meter telescope at such distance, and we're very proud of it," Wang said. "The ultraluminous nature of this quasar will allow us to make unprecedented measurements of the temperature, ionization state and metal content of the intergalactic medium at the epoch of reionization." Following the initial discovery, two telescopes in southern Arizona did the heavy lifting in determining the distance and mass of the black hole: the 8.4-meter Large Binocular Telescope, or LBT, on Mount Graham and the 6.5-meter Multiple Mirror Telescope, or MMT, on Mount Hopkins. Additional observations with the 6.5-meter Magellan Telescope in Las Campanas Observatory, Chile, and the 8.2-meter Gemini North Telescope in Mauna Kea, Hawaii, confirmed the results. "This quasar is very unique," said Xue-Bing Wu, a professor of the Department of Astronomy, School of Physics at Peking University and the associate director of the Kavli Institute of Astronomy and Astrophysics. "Just like the brightest lighthouse in the distant universe, its glowing light will help us to probe more about the early universe." Wu leads a team that has developed a method to effectively select quasars in the distant universe based on optical and near-infrared photometric data, in particular using data from the Sloan Digital Sky Survey and NASA's Wide-Field Infrared Explorer, or WISE, satellite. "This is a great accomplishment for the LBT," said Fan, who chairs the LBT Scientific Advisory Committee and also discovered the previous record holders for the most massive black hole in the early universe, about a fourth of the size of the newly discovered object. "The especially sensitive optical and infrared spectrographs of the LBT provided the early assessment of both the distance of the quasars and the mass of the black hole at the quasar's center." For Christian Veillet, director of the Large Binocular Telescope Observatory, or LBTO, this discovery demonstrates both the power of international collaborations and the benefit of using a variety of facilities spread throughout the world. "This result is particularly gratifying for LBTO, which is well on its way to full nighttime operations," Veillet said. "While in this case the authors used two different instruments in series, one for visible light spectroscopy and one for near-infrared imaging, LBTO will soon offer a pair of instruments that can be used simultaneously, effectively doubling the number of observations possible in clear skies and ultimately creating even more exciting science." To further unveil the nature of this remarkable quasar, and to shed light on the physical processes that led to the formation of the earliest supermassive black holes, the research team will carry out further investigations on this quasar with more international telescopes, including the Hubble Space Telescope and the Chandra X-ray Telescope. Contacts and sources: Daniel Stolte, University of Arizona, Source: Article
Read More........

Extreme Power of Black Hole Revealed

Astronomers have used NASA's Chandra X-ray Observatory and a suite of other telescopes to reveal one of the most powerful black holes known. The black hole has created enormous structures in the hot gas surrounding it and prevented trillions of stars from forming
The black hole is in a galaxy cluster named RX J1532.9+3021 (RX J1532 for short), located about 3.9 billion light years from Earth. The image here is a composite of X-ray data from Chandra revealing hot gas in the cluster in purple and optical data from the Hubble Space Telescope showing galaxies in yellow. The cluster is very bright in X-rays implying that it is extremely massive, with a mass about a quadrillion - a thousand trillion - times that of the sun. At the center of the cluster is a large elliptical galaxy containing the supermassive black hole. The large amount of hot gas near the center of the cluster presents a puzzle. Hot gas glowing with X-rays should cool, and the dense gas in the center of the cluster should cool the fastest. The pressure in this cool central gas is then expected to drop, causing gas further out to sink in towards the galaxy, forming trillions of stars along the way. However, astronomers have found no such evidence for this burst of stars forming at the center of this cluster. This problem has been noted in many galaxy clusters but RX J1532 is an extreme case, where the cooling of gas should be especially dramatic because of the high density of gas near
Artist's view of the Chandra X-ray Observatory
the center. Out of the thousands of clusters known to date, less than a dozen are as  extreme as RX J1532. The Phoenix Cluster is the most extreme, where, conversely, large numbers of stars have been observed to be forming. What is stopping large numbers of stars from forming in RX J1532? Images from the Chandra X-ray Observatory and the NSF's Karl G. Jansky Very Large Array (VLA) have provided an answer to this question. The X-ray image shows two large cavities in the hot gas on either side of the central galaxy. The Chandra image has been specially processed to emphasize the cavities. Both cavities are aligned with jets seen in radio images from the VLA. The location of the supermassive black hole between the cavities is strong evidence that the supersonic jets generated by the black hole have drilled into the hot gas and pushed it aside, forming the cavities. Shock fronts - akin to sonic booms - caused by the expanding cavities and the release of energy by sound waves reverberating through the hot gas provide a source of heat that prevents most of the gas from cooling and forming new stars. The cavities are each about 100,000 light years across, roughly equal to the width of the Milky Way galaxy. The power needed to generate them is among the largest known in galaxy clusters. For example, the power is almost 10 times greater than required to create the well-known cavities in Perseus. Although the energy to power the jets must have been generated by matter falling toward the black hole, no X-ray emission has been detected from infalling material. This result can be explained if the black hole is "ultramassive" rather than supermassive, with a mass more than 10 billion times that of the sun. Such a black hole should be able to produce powerful jets without consuming large amounts of mass, resulting in very little radiation from material falling inwards. Another possible explanation is that the black hole has a mass only about a billion times that of the sun but is spinning extremely rapidly. Such a black hole can produce more powerful jets than a slowly spinning black hole when consuming the same amount of matter. In both explanations the black hole is extremely massive. A more distant cavity is also seen at a different angle with respect to the jets, along a north-south direction. This cavity is likely to have been produced by a jet from a much older outburst from the black hole. This raises the question of why this cavity is no longer aligned with the jets. There are two possible explanations. Either large-scale motion of the gas in the cluster has pushed it to the side or the black hole is precessing, that is, wobbling like a spinning top. A paper describing this work was published in the November 10th, 2013 issue of The Astrophysical Journal and is available online (http://arxiv.org/abs/1306.0907). The first author is Julie Hlavacek-Larrondo from Stanford University. The Hubble data used in this analysis were from the Cluster Lensing and Supernova survey, led by Marc Postman from Space Telescope Science Institute: http://www.stsci.edu/~postman/CLASH/Home.html, NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Mass., controls Chandra's science and flight operations. For more information about Chandra X-ray Observatory, visit: http://www.nasa.gov/mission_pages/chandra/main/, Chandra on Flickr: http://www.flickr.com/photos/nasamarshall/sets/72157606205297786/, Images, Text, Credits: X-ray: NASA/CXC/Stanford/J.Hlavacek-Larrondo et al, Optical: NASA/ESA/STScI/M.Postman & CLASH team.Greetings, Orbiter.ch, Source: Orbiter.ch Space News
Read More........

Birth Of Black Hole Kills The Radio Star

Astronomers led by a Curtin University researcher have discovered a new population of exploding stars that “switch off” their radio transmissions before collapsing into a Black Hole. These exploding stars use all of their energy to emit one last strong beam of highly energetic radiation – known as a gamma-ray burst – before they die. Up until now, it was thought all gamma-ray bursts were followed by a radio afterglow – a premise that a team of Australian astronomers of the Centre for All-sky Astrophysics (CAASTRO) at Curtin University and theUniversity of Sydney originally set out to prove correct. “But we were wrong. After studying an ultra-sensitive image of gamma-ray bursts with no afterglow, we can now say the theory was incorrect and our telescopes have not failed us,” lead researcher and Curtin research fellow Dr Paul Hancock said. The technique used to create the ultra-sensitive image was recently published in The Astrophysical Journal. It allowed for the stacking of 200 separate observations on top of each other to re-create the image of a gamma-ray burst in much better quality – yet, no trace of a radio afterglow was found. “In our research paper we argue that there

must be two distinct types of gamma-ray burst, likely linked to differences in the magnetic field of the exploding star,” Dr Hancock said. “Gamma-ray bursts are thought to mark the birth of a Black Hole or Neutron Star – both of which have super-dense cores. But Neutron Stars have such strong magnetic fields (a million times stronger than those of Black Holes) that producing gamma-rays are more difficult. “We think that those stars that collapse to form a Neutron Star have energy left over to produce the radio afterglow whereas those that become Black Holes put all their energy into one final powerful gamma-ray flash.” New work is underway to test the team’s theory and to see if there are other subtle ways in which the two types of bursts differ. “We now have to take a whole new look at gamma-ray bursts – so far this work has shown that being wrong is sometimes more interesting than being right,” Dr Hancock said. Telescope facilities such as the Australia Telescope Compact Array in northern New South Wales and the Karl Jansky Very Large Array in the US both have observing programs to search for gamma-ray burst afterglows and have been recently upgraded to increase their sensitivity. The research report can be found at http://arxiv.org/abs/1308.4766 Contacts and sources: Megan MeatesCurtin UniversitySource: ArticleImage
Read More........

Peer Into A Simulated Stellar-Mass Black Hole

A new study by astronomers at NASA, Johns Hopkins University and Rochester Institute of Technology confirms long-held suspicions about how stellar-mass black holes produce their highest-energy light. “We’re accurately representing the real object and calculating the light an astronomer would actually see,” says Scott Noble, associate research scientist in RIT’s Center for Computational Relativity and Gravitation. “This is a first-of-a-kind calculation where we actually carry out all the pieces together. We start with the equations we expect the system to follow, and we solve those full equations on a supercomputer. That gives us the data with which we can then make the predictions of the X-ray spectrum.” Lead researcher Jeremy Schnittman, an astrophysicist at NASA’s Goddard Space Flight Center, says the study looks at one of the most extreme physical environments in the universe: “Our work traces the complex motions, particle interactions and turbulent magnetic fields in billion-degree gas on the threshold of a black hole.” This animation of supercomputer data takes you to the inner zone of the accretion disk of a stellar-mass black hole. Gas heated to 20 million degrees Fahrenheit as it spirals toward the black hole glows in low-energy, or soft, X-rays. Just before the gas plunges to the center, its orbital motion is approaching the speed of light. X-rays up to hundreds of times more powerful (“harder”) than those in the disk arise from the corona, a region of tenuous and much hotter gas around the disk.
Credit: NASA’s Goddard Space Flight Center
Coronal temperatures reach billions of degrees.  By analyzing a supercomputer simulation of gas flowing into a black hole, the team finds they can reproduce a range of important X-ray features long observed in active black holes. “We’ve predicted and come to the same evidence that the observers have,” Noble says. “This is very encouraging because it says we actually understand what’s going on. If we made all the correct steps and we saw a totally different answer, we’d have to rethink what our model is.” Scott Noble, associate research scientist in RIT’s Center for Computational Relativity and Gravitation
Gas falling toward a black hole initially orbits around it and then accumulates into a flattened disk. The gas stored in this disk gradually spirals inward and becomes compressed and heated as it nears the center. Ultimately reaching temperatures up to 20 million degrees Fahrenheit (12 million C) — some 2,000 times hotter than the sun’s surface — the gas shines brightly in low-energy, or soft, X-rays. For more than 40 years, however, observations show that black holes also produce considerable amounts of “hard” X-rays, light with energy 10 to hundreds of times greater than soft X-rays. This higher-energy light implies the presence of correspondingly hotter gas, with temperatures reaching billions of degrees. The new study bridges the gap between theory and observation, demonstrating that both hard and soft X-rays inevitably arise from gas spiraling toward a black hole. Working with Noble and Julian Krolik, a professor at Johns Hopkins, Schnittman developed a process for modeling the inner region of a black hole’s accretion disk, tracking the emission and movement of X-rays, and comparing the results to observations of real black holes. Noble developed a computer simulation solving all of the equations governing the complex motion of inflowing gas and its associated magnetic fields near an accreting black hole. The rising temperature, density and speed of the infalling gas dramatically amplify magnetic fields threading through the disk, which then exert additional influence on the gas. The result is a turbulent froth orbiting the black hole at speeds approaching the speed of light. The calculations simultaneously tracked the fluid, electrical and magnetic properties of the gas while also taking into account Einstein’s theory of relativity. Running on the Ranger supercomputer at the Texas Advanced Computing Center located at the University of Texas in Austin, Noble's simulation used 960 of Ranger’s nearly 63,000 central processing units and took 27 days to complete. Over the years, improved X-ray observations provided mounting evidence that hard X-rays originated in a hot, tenuous corona above the disk, a structure analogous to the hot corona that surrounds the sun. “Astronomers also expected that the disk supported strong magnetic fields and hoped that these fields might bubble up out of it, creating the corona,” Noble says. “But no one knew for sure if this really happened and, if it did, whether the X-rays produced would match what we observe.” Using the data generated by Noble’s simulation, Schnittman and Krolik developed tools to track how X-rays were emitted, absorbed and scattered throughout both the accretion disk and the corona region. Combined, they demonstrate for the first time a direct connection between magnetic turbulence in the disk, the formation of a billion-degree corona, and the production of hard X-rays around an actively “feeding” black hole. Results from the study, “X-ray Spectra from Magnetohydrodynamic Simulations of Accreting Black Holes,” were published in the June 1 issue of The Astrophysical Journal (ApJ, 769, 156). In the corona, electrons and other particles move at appreciable fractions of the speed of light. When a low-energy X-ray from the disk travels through this region, it may collide with one of the fast-moving particles. The impact greatly increases the X-ray’s energy through a process known as inverse Compton scattering. “Black holes are truly exotic, with extraordinarily high temperatures, incredibly rapid motions and gravity exhibiting the full weirdness of general relativity,” Krolik says. “But our calculations show we can understand a lot about them using only standard physics principles.” The study was based on a non-rotating black hole. The researchers are extending the results to spinning black holes, where rotation pulls the inner edge of the disk further inward and conditions become even more extreme. They also plan a detailed comparison of their results to the wealth of X-ray observations now archived by NASA and other institutions. Black holes are the densest objects known. Stellar-mass black holes form when massive stars run out of fuel and collapse, crushing up to 20 times the sun’s mass into compact objects less than 75 miles (120 kilometers) wide. Contacts and sources: Susan GawlowiczRochester Institute of TechnologySource: Nano Patents And Innovations
Read More........

Celestial Fireworks When Milky Way's Giant Black Hole Swallowed A Satellite Galaxy

Julie Turner, Vanderbilt University
These days the core of the Milky Way galaxy is a pretty tame place...cosmically speaking. The galactic black hole at the center is a sleeping giant. Existing stars are peacefully circling. Although conditions are favorable, there doesn’t even seem to be much new star formation going on. But there is growing evidence that several million years ago the galactic center was the site of all manner of celestial fireworks. A pair of assistant professors – Kelly Holley-Bockelmann at Vanderbilt and Tamara Bogdanović at Georgia Institute of Technology – have come up with an explanation that fits these “forensic” clues. Artist's illustration of a satellite galaxy on a collision course with the galactic black hole. Writing in the March 6 issue of the Monthly Notices of the Royal Astronomical Society, the astronomers describe how a single event – a violent collision and merger between the galactic black hole and an intermediate-sized black hole in one of the small “satellite galaxies” that circle the Milky Way – could have produced the features that point to a more violent past for the galactic core. “Tamara and I had just attended an astronomy conference in Aspen, Colorado, where several of these new observations were announced,” said Holley-Bockelmann. “It was January 2010 and a snow storm had closed the airport. We decided to rent a car to drive to Denver. As we drove through the storm, we pieced together the clues from the conference and realized that a single catastrophic event – the collision between two black holes about 10 million years ago - could explain all the new evidence.” The most dramatic of these extraordinary clues are the Fermi bubbles. These giant lobes of high-energy radiation - caused by particles moving nearly the speed of light - extend some 30,000 light years above and below the Milky Way center. If they were glowing in visible light they would fill about half of the night sky. But they radiate X-ray and gamma-ray light, so you need X-ray vision to see them. The discovery was reported by astronomers at the Harvard-Smithsonian Center for Astrophysics. Another puzzling characteristic of the GC, the astronomer’s abbreviation for the galactic center, is the fact that it contains the three most massive clusters of young stars in the entire galaxy. The Central, Arches and Quintuplet clusters each contain hundreds of young, hot stars that are much larger than the Sun. These stars typically burn out in “only” a few million years because of their extreme brightness, so there had to have been a relatively recent burst of star formation at the GC. The supermassive black hole that dominates the center of the Milky Way weighs in at about four million solar masses and is roughly 40 light seconds in diameter: only nine times the size of the sun. Such an object produces intense gravitational tides. So astronomers were surprised to discover a number of clumps of bright new stars closer than three lights years from the black hole’s maw. It wouldn’t be that surprising if the stars were being sucked into the black hole, but they show every sign of having formed in place. For this to happen, the clouds of dust and gas that they formed from must have been exceptionally dense: 10,000 times thicker than the other molecular clouds in the GC. While there is an excess of young hot stars in the galactic core, there is also a surprising dearth of older stars. Theoretical models predict that the density of old stars should increase as you move closer to the black hole. Instead, there are very few old stars found within several light years of the sleeping giant. When she got home from the conference, Holley-Bockelmann recruited Vanderbilt graduate student Meagan Langto work on the problem with them. With the assistance of Pau Amaro-Seoane from the Max Planck Institute for Gravitational Physics in Germany, Alberto Sesana from the Institut de CiÚncies de l'Espai in Spain, and Vanderbilt Research Assistant Professor Manodeep Sinha, they came up with a theoretical model that fits the observations and makes some testable predictions. The scenario began about 13 billion years ago, when the path of one of the smaller satellite galaxies orbiting the Milky Way is diverted so that it began drifting inward toward the core. According to a recent study, this may have happened dozens of times in the lifetime of the Milky Way. As the satellite galaxy – a collection of stars and gas with an intermediate-sized black hole with a mass equal to about 10,000 suns – spiraled in, most of its mass was gradually stripped away, finally leaving the black hole and a handful of gravitationally bound stars. About 10 million years ago, the stripped down core of the satellite galaxy finally reached the galactic center. When two black holes merge, they first go through an elaborate dance. So the smaller black hole would have circled the galactic black hole for several million years before it was ultimately consumed. As the smaller black hole circled closer and closer, it would have churned up the dust and gas in the vicinity and pushed enough material into the galactic black hole in the process to produce the Fermi bubbles. The violent gravitational tides produced by the process could easily have compressed the molecular clouds in the core to the super densities required to produce the young stars that are now located on the central black hole’s doorstep. In addition, the vigorous churning would have swept out the existing stars from the area surrounding the massive central black hole. In fact, the astronomer’s model predicts that the black holes’ merger dance should have flung a large number of the missing old stars out into the galaxy at hyper velocities, thus explaining the absence of old stars immediately around the super-massive black hole. “The gravitational pull of the satellite galaxy’s black hole could have carved nearly 1,000 stars out of the galactic center,” said Bogdanović. “Those stars should still be racing through space, about 10,000 light years away from their original orbits.” It should be possible to detect these stars with large surveys like the Sloan Digital Sky Survey because these stars would be traveling at much higher velocities than stars that have not undergone this type of interaction. So discovery of a large number of "high velocity stars" racing outward through the galaxy would strongly support the proposed scenario of the Milky Way and satellite galaxy merger. The research was supported by National Science Foundation Career Grant AST-0847696 and National Aviation and Space Administration grants NNX08AG74G and PF9-00061 as well as an NSF Graduate Research Fellowship. Contacts and sources: Vanderbilt Univerity, Citation: Monthly Notices of the Royal Astronomical Society, Source: Nano Patents And Innovations
Read More........

Vampire stars suck life from their neighbours

Light Echoes Red Supergiant Star V838 Monocerotis oct02
Star V838 Monocerotis's (V838 Mon) light echo, which is about six light years in diameter, is seen from the Hubble space telescope in this in this February 2004 handout photo released by NASA. It became the brightest star in the Milky Way Galaxy in January 2002 when its outer surface greatly expanded suddenly. 
An international team of astronomers has spotted a strange phenomena called as vampire stars, where a smaller companion star sucks matter off the surface of its larger neighbour using the very large telescope in Chile. They looked at what are known as O-type stars, which have very high temperature, mass and brightness. These stars have short and violent lives and play a key role in the evolution of galaxies. “These stars are absolute behemoths. They have 15 or more times the mass of our Sun and can be up to a million times brighter. These stars are so hot that they shine with a brilliant blue-white light and have surface temperatures over 30,000C,” the Daily Mail quoted Hugues Sana, from the University of Amsterdam, Netherlands, who is the lead author of the study, as saying. The astronomers studied a sample of 71 O-type single stars and stars in pairs (binaries) in six nearby young star clusters in the Milky Way. Most of the observations in their study were obtained using ESO telescopes, including the VLT. By analysing the light coming from these targets in greater detail than before, the team discovered that 75 per cent of all O-type stars exist inside binary systems, a higher proportion than previously thought, and the first precise determination of this number. Mergers between stars, which the team estimates will be the ultimate fate of around 20-30 per cent of O-type stars, are violent events. But even the comparatively gentle scenario of vampire stars, which accounts for a further 40-50 per cent of cases, has profound effects on how these stars evolve. Until now, astronomers mostly considered that closely-orbiting massive binary stars were the exception, something that was only needed to explain exotic phenomena such as X-ray binaries, double pulsars and black hole binaries. The new study shows that to properly interpret the Universe, this simplification cannot be made: these heavyweight double stars are not just common, their lives are fundamentally different from those of single stars. For instance, in the case of vampire stars, the smaller, lower-mass star is rejuvenated as it sucks the fresh hydrogen from its companion. Its mass will increase substantially and it will outlive its companion, surviving much longer than a single star of the same mass would. The victim star, meanwhile, is stripped of its envelope before it has a chance to become a luminous red super giant. Instead, its hot, blue core is exposed. As a result, the stellar population of a distant galaxy may appear to be much younger than it really is: both the rejuvenated vampire stars, and the diminished victim stars become hotter, and bluer in colour, mimicking the appearance of younger stars. Knowing the true proportion of interacting high-mass binary stars is therefore crucial to correctly characterise these faraway galaxies. The only information astronomers have on distant galaxies is from the light that reaches our telescopes. Without making assumptions about what is responsible for this light we cannot draw conclusions about the galaxy, such as how massive or how young it is. According to Sana, this study shows that the frequent assumption that most stars are single can lead to the wrong conclusions. Source: Hindustan TimesImage: flickr.com
Read More........

Biggest Black Hole Blast Discovered (Material Ejected from Quasar SDSS J1106 1939)

This artist’s impression shows the material ejected from the region around the supermassive black hole in the quasar SDSS J1106+1939. This object has the most energetic outflows ever seen, at least five times more powerful than any that have been observed to date. Quasars are extremely bright galactic centers powered by supermassive  black holes. Many blast huge amounts of material out into their host galaxies,
and these outflowsplay a key role in the evolution of galaxies. But, before this object was studied, the observed outflows weren’t as powerful as predicted by theorists. The very bright quasar appears at the center of the picture and the outflow spreads about 1000 light-years out into the surrounding galaxy. Illustration credit: ESO/L. Calçada, Note: For more information, see Biggest Black Hole Blast Discovered.Source: Minex
Read More........

Greedy Black Hole Discovered in Andromeda. (A New ULX in Messier 31)

This image shows the Andromeda galaxy (also known as M31) as seen in X-rays with ESA's XMM-Newton space observatory (shown here in red, green, blue and white, according to the energy of the different sources). This X-ray view is combined with an image of Andromeda taken with ESA's Herschel space observatory at far-infrared wavelengths (shown here in grey). Amongst the hundreds of X-ray sources revealed by XMM-Newton in Andromeda are: novae - binary systems comprising a white dwarf accreting material from a companion star; X-ray binaries - binary systems hosting a neutron star or a black hole accreting material from a companion star; and supernova remnants. The sequence of images at the top depict the center of Andromeda and were taken with XMM-Newton on four occasions during 2012. These images illustrate the discovery of a new source, XMMU J004243.6+412519 (highlighted with a circle). XMMU J004243.6+412519 was first detected on 15 January 2012 within an XMM-Newton survey of Andromeda, designed to study the X-ray source population of this galaxy with particular emphasis on novae. On 21 January 2012, XMM-Newton recorded a significant brightening of this source; with a luminosity in excess of 1039 erg/s, it was classified as an ultra-luminous X-ray source, or ULX. This is only the second ULX known in the Andromeda galaxy. The source then became fainter, as shown in the last image of the sequence, taken on 8 August 2012. XMMU J004243.6+412519 is an X-ray binary system consisting of a stellar-mass black hole that is accreting matter from a low-mass companion star. The source's dramatic boost in X-rays indicates a transition to an accretion rate close to the black hole's Eddington limit, or even above it. Image credit: ESA/XMM-Newton/MPE, Note: For more information, see, Image credit: ESA/XMM-Newton/MPE, Note: For more information, see Greedy Black Hole Discovered in Andromeda. Greedy Black Hole Discovered in Andromeda. Source: Minex
Read More........

40 Billion Times More Massive Than Our Sun: Record Setting Supermassive Black Hole

Credit: X-ray: NASA/CXC/Stanford/Hlavacek-Larrondo, J. et al; Optical: NASA/STScI; Radio: NSF/NRAO/VLA 
Some of the biggest black holes in the Universe may actually be even bigger than previously thought, according to a study using data from NASA's Chandra X-ray Observatory. Astronomers have long known about the class of the largest black holes, which they call "supermassive" black holes. Typically, these black holes, located at the centers of galaxies, have masses ranging between a few million and a few billion times that of our sun. This new analysis has looked at the brightest galaxies in a sample of 18 galaxy clusters, to target the largest black holes. The work suggests that at least ten of the galaxies contain an ultramassive black hole, weighing between 10 and 40 billion times the mass of the sun. Astronomers refer to black holes of this size as "ultramassive" black holes and only know of a few confirmed examples. "Our results show that there may be many more ultramassive black holes in the universe than previously thought," said study leader Julie Hlavacek-Larrondo of Stanford University and formerly of Cambridge University in the UK. The researchers estimated the masses of the black holes in the sample by using an established relationship between masses of black holes, and the amount of X-rays and radio waves they generate. This relationship, called the fundamental plane of black hole activity, fits the data on black holes with masses ranging from 10 solar masses to a billion solar masses. The black hole masses derived by Hlavacek-Larrondo and her colleagues were about ten times larger than those derived from standard relationships between black hole mass and the properties of their host galaxy. One of these relationships involves a correlation between the black hole mass and the infrared luminosity of the central region, or bulge, of the galaxy. "These results may mean we don't really understand how the very biggest black holes coexist with their host galaxies," said co-author Andrew Fabian of Cambridge University. "It looks like the behavior of these huge black holes has to differ from that of their less massive cousins in an important way." All of the potential ultramassive black holes found in this study lie in galaxies at the centers of massive galaxy clusters containing huge amounts of hot gas. Outbursts powered by the central black holes are needed to prevent this hot gas from cooling and forming enormous numbers of stars. To power the outbursts, the black holes must swallow large amounts of mass. Because the largest black holes can swallow the most mass and power the biggest outbursts, ultramassive black holes had already been predicted to exist, to explain some of the most powerful outbursts seen. The extreme environment experienced by these galaxies may explain why the standard relations for estimating black hole masses based on the properties of the host galaxy do not apply. These results can only be confirmed by making detailed mass estimates of the black holes in this sample, by observing and modeling the motion of stars or gas in the vicinity of the black holes. Such a study has been carried out for the black hole in the center of the galaxy M87, the central galaxy in the Virgo Cluster, the nearest galaxy cluster to earth. The mass of M87's black hole, as estimated from the motion of the stars, is significantly higher than the estimate using infrared data, approximately matching the correction in black hole mass estimated by the authors of this Chandra study. "Our next step is to measure the mass of these monster black holes in a similar way to M87, and confirm they are ultramassive. I wouldn't be surprised if we end up finding the biggest black holes in the Universe," said Hlavacek-Larrondo. "If our results are confirmed, they will have important ramifications for understanding the formation and evolution of black holes across cosmic time." In addition to the X-rays from Chandra, the new study also uses radio data from the NSF's Karl G. Jansky Very Large Array (JVLA) and the Australia Telescope Compact Array (ATCA) and infrared data from the 2 Micron All-Sky Survey (2MASS). These results were published in the July 2012 issue of The Monthly Notices of the Royal Astronomical Society. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. For Chandra images, multimedia and related materials, visit: http://www.nasa.gov/chandra, For an additional interactive image, podcast, and video on the finding, visit:  http://chandra.si.eduSource: Nano Patents And Innovations
Read More........

NASA to hunt "black holes" with NuSTAR

© Photo: 'Vesti.Ru'
NASA will study black holes and supernovae using its new spectroscopic telescope (NuSTAR) that is slated to travel to orbit on June 13. It’s the first telescope capable of studying light in the high-energy, short-wavelength X-ray range. Its sensitivity is 100 times higher than that of its predecessors. Complete with images sent back by the Hubble Spitzer and Chandra telescopes, surveillance data from the new “space eye” with the operational lifespan of five years will give scientists an insight into how black holes are born. Source: Voice of Russia
Read More........

Black hole millions of times the size of our sun is 'hurtling' through space & scientists warn there could be many more

Astronomers have found a black hole several million times the size of our sun hurtling through space - and there could be many more of these deadly intergalactic missiles. It requires almost unimaginable force to move one - but scientists think that 'gravity waves', ripples in the fabric of space predicted by Einstein, could 'kick' black holes out of their home galaxies. The astronomers predict there could be 'many' hurtling black holes out there at - and that the objects, moving at milluions of miles per hour, would be completely invisible to our telescopes. The objects have such intense gravity they can tear stars apart. Supermassive black holes are thought to lurk at the centre of most galaxies, including our own Milky Way. ‘It's hard to believe that a supermassive black hole weighing millions of times the mass of the sun could be moved at all, let alone kicked out of a galaxy at enormous speed,’ said Francesca Civano of the Harvard-Smithsonian Center for Astrophysics. ‘But these new data support the idea that gravitational waves -- ripples in the fabric of space first predicted by Albert Einstein but never detected directly -- can exert an extremely powerful force.Source: The Coming Crisis
Read More........

NGC 4151

Minex: This image shows the spiral galaxy NGC 4151, located at a distance of about 45 million light years from us. NGC 4151 is a Seyfert galaxy and hosts one of the brightest active galactic nuclei (AGN) known at X-ray wavelengths. The supermassive black hole lying at the center of NGC 4151 has a mass of about 50 million solar masses. Observations performed with ESA's XMM-Newton X-ray observatory have revealed X-rays emitted and then reflected by ionized iron atoms very close to the central black hole. By measuring the time delays occurring in these 'reverberation' events, scientists have been able to map the vicinity of a black hole in unprecedented detail. Photo credit: David W. Hogg, Michael R. Blanton, and the Sloan Digital Sky Survey Collaboration, Source: Minex
Read More........

Messier 101, The Pinwheel Galaxy

Minex: This image of the Pinwheel Galaxy, or M101, combines data in the infrared, visible, ultraviolet and X-rays from four of NASA's space telescopes. The view shows that both young and old stars are evenly distributed along M101's tightly wound spiral arms. Such composite images allow astronomers to see how features in one part of the light spectrum match up with those seen in other parts. It's like seeing with a regular camera, an ultraviolet camera, night-vision goggles and X-ray vision, all at once! The Pinwheel Galaxy is in the constellation of Ursa Major (also known as the Big Dipper). It is about 70 percent larger than our own Milky Way galaxy, with a diameter of about 170,000 light-years, and sits at a distance of 21 million light-years from Earth. This means that the light we're seeing in this image left the Pinwheel Galaxy about 21 million years ago -- many millions of years before humans ever walked theEarth. The red colors in the image show infrared light, as seen by the Spitzer Space Telescope. These areas show the heat emitted by dusty lanes in the galaxy, where stars are forming. The yellow component is visible light, observed by the Hubble Space Telescope. Most of this light comes from stars, and they trace the same spiral structure as the dust lanes seen in the infrared. The blue areas show ultraviolet light, given out by hot, young stars that formed about 1 million years ago. The Galaxy Evolution Explorer, which NASA recently loaned to the California Institute of Technologyin Pasadena, California, captured this component of the image. Finally, the hottest areas are shown in purple, where the Chandra X-ray Observatory observed the X-rayemission from exploded stars, million-degree gas and material colliding around, Photo credit: NASA/JPL-Caltech/ESA/STScI/CXC, black holes.Source: Minex
Read More........

Black holes spinning faster and faster!!! Can be Dangerous??

Many giant black holes in the centre of galaxies are spinning faster than at any time in the history of the universe, and may have been set in motioncomparatively recently, new research shows. Dr Alejo Martinez-Sansigre of the University of Portsmouth and Professor Steve Rawlings of the University of Oxford used radio, optical and X-ray data to test their theoretical models of spinning black holes, and found the models stood up well for supermassive black holes with twin jets. Using the radio observations, the two astronomers were able to sample the population of black holes, deducing the spread of the power of the twin jets. By estimating how the black holes acquire material, they could then work out how quickly they might be spinning. The observations also give information on how the spins of supermassive black holes have evolved. In the distant past, say the researchers, practically all spun very slowly, whereas nowadays some have very high spins. So on average, they're spinning faster than ever before. It's the first time that the evolution of the spin of the supermassive black holeshas been closely described, and suggests that those that grow by swallowing matter will barely spin, while those that merge with other black holes will be left spinning rapidly. "The spin of black holes can tell you a lot about how they formed. Our results suggest that in recent times a large fraction of the most massive black holeshave somehow spun up," says Dr Martinez-Sansigre. "A likely explanation is that they have merged with other black holes of similar mass, which is a truly spectacular event, and the end product of this merger is a faster -spinning black hole." Later this decade, the team hopes to test the theory that these supermassiveblack holes have been set spinning relatively recently. "With so many collisions, we expect there to be a cosmic background of gravitational waves, something that will change the timing of the pulses of radio waves that we detect from the remnants of massive stars known as pulsars," says Professor Rawlings. "If we are right, this timing change should be picked up by the Square Kilometre Array, the giant radio observatory due to start operating in 2019."Source: The Ultimate Update
Read More........

Active Black Hole Squashes Star Formation

Minsex: The Herschel Space Observatory has shown that galaxies with the most powerful, active, supermassive black holes at their cores produce fewer stars than galaxies with less active black holesSupermassive black holes are believed to reside in the hearts of all large galaxies. When gas falls upon these monsters, the materials are accelerated and heated around the black hole, releasing great torrents of energy. In the process, active black holes often generate colossal jets that blast out twin streams of heated matter. Inflows of gas into a galaxy also fuel the formation of new stars. In a new study of distant galaxies,Herschel helped show that star formation and black hole activity increase together, but only up to a point. Astronomers think that if an active black hole flares up too much, it starts spewing radiation that prevents raw material from coalescing into new stars. This artistically modified image of the local galaxy Arp 220, captured by the Hubble Space Telescope, helps illustrate the Herschel results. The bright core of the galaxy, paired with an overlaid artist's impression of jets emanating from it, indicate that the central black hole's activity is intensifying. As the active black hole continues to rev up, the rate of star formation will, in turn, be tamped down in thegalaxy. Astronomers want to further study how star formation and black hole activity are intertwined. Illustration credit: NASA/JPL-Caltech, Source; Minsex
Read More........