Bionic eye good to go:artificial retina receives FDA approval

The U.S. Food and Drug Administration (FDA) granted market approval to an artificial retina technology today, the first bionic eye to be approved for patients in the United States. The prosthetic technology was developed in part with support from the National Science Foundation (NSF). The device, called the Argus® II Retinal Prosthesis System, transmits images from a small, eye-glass-mounted camera wirelessly to a microelectrode array implanted on a patient's damaged retina. The array sends electrical signals via the optic nerve, and the brain interprets a visual image. While the Argus II is a major breakthrough in retinal  prosthetics, researchers are continuing their research. This third-generation retina chip, itself still very early in the development stage, contains 1,000 electrodes and was developed by Wentai Liu, a professor of bioengineering at the UCLA Henry Samueli School of Engineering and Applied Science and his colleagues. Early engineering done by Liu and his team was licensed to Second Sight
for the Argus II Retinal Prosthesis  System. The FDA approval currently applies to individuals who have lost sight as a result of severe to profoundretinitis pigmentosa (RP), an ailment that affects one in every 4,000 Americans. The implant allows some individuals with RP, who are completely blind, to locate objects, detect movement, improve orientation and mobility skills and discern shapes such as large letters.The Argus II is manufactured by, and will be distributed by, Second Sight Medical Products of Sylmar, Calif., which is part of the team of scientists and engineers from the university, federal and private
Credit: Wentai Liu, UCLA
sectors who spent nearly two decades developing the  system with public and private investment. "Seeing my grandmother go blind motivated me to pursue ophthalmology and biomedical engineering to develop a treatment for patients for whom there was no foreseeable cure," says the technology's co-developer, Mark Humayun, associate director of research at the Doheny Eye Institute at the University of Southern California and director of the NSF Engineering Research Center for Biomimetic MicroElectronic Systems(BMES). "It was an interdisciplinary approach grounded in biomedical engineering that has allowed us to develop the Argus II, making it the first commercially approved retinal implant in the world to
 restore sight to some blind patients," Humayun adds. The effort by Humayun and his colleagues has received early and continuing support from NSF, the National Institutes of Health and the Department of Energy, with grants totaling more than $100 million. The private sector's support nearly matched that of the federal government. "The retinal implant exemplifies how NSF grants for high-risk, fundamental research can directly result in ground-breaking technologies decades later," said Acting NSF Assistant Director for Engineering Kesh Narayanan. "In collaboration with the Second Sight team and the courageous patients who volunteered to have experimental surgery to implant the first-generation devices, the researchers of NSF's Biomimetic MicroElectronic Systems Engineering Research Center are developing technologies that may ultimately have as profound an impact on blindness as the cochlear implant has had for hearing loss." Although some treatments to slow the progression of degenerative diseases of the retina are available, no treatment has existed that could replace the function of lost photoreceptors in the eye. The researchers began their retinal prosthesis research in the late 1980s to address that need, and in 1994 Humayun received his first NSF grant, an NSF Young Investigator Award, which built upon additional support from the Whittaker Foundation. Humayun used the funding to develop the first conceptualization of the Argus II's underlying artificial retina technology. Since that time, he and his collaborators--including Wentai Liu of the University of California, Los Angeles and fellow USC researchers Jim Weiland and Eugene de Juan, Jr.--received six additional NSF grants, totaling $40 million, some of which was part of NSF's funding for BMES, launched in 2003. BMES drives research into a range of sophisticated prosthetic technologies to treat blindness, paralysis and other conditions. "We were encouraged by the team's exploratory work in the 1980s and 1990s, supported by NSF and others, which revealed that healthy neural pathways can carry information to the brain, even though other parts of the eye are damaged," adds Narayanan. "The retinal prosthesis they developed from that work simulates the most complex part of the eye. Based on the promise of that implant, we decided in 2003 to entrust the research team with an NSF Engineering Research Center," says Narayanan. "The center was to scale up technology development and increase device sensitivity and biocompatibility, while simultaneously preparing students for the workforce and building partnerships to speed the technology to the marketplace, where it could make a difference in people's lives. The center has succeeded with all of those goals." The researchers' efforts have bridged cellular biology--necessary for understanding how to stimulate the retinal ganglion cells without permanent damage--with microelectronics, which led to the miniaturized, low-power integrated chip for performing signal conversion, conditioning and stimulation functions. The hardware was paired with software processing and tuning algorithms that convert visual imagery to stimulation signals, and the entire system had to be incorporated within hermetically sealed packaging that allowed the electronics to operate in the vitreous fluid of the eye indefinitely. Finally, the research team had to develop new surgical techniques in order to integrate the device with the body, ensuring accurate placement of the stimulation electrodes on the retina. "The artificial retina is a great engineering challenge under the interdisciplinary constraint of biology, enabling technology, regulatory compliance, as well as sophisticated design science," adds Liu. "The artificial retina provides an interface between biotic and abiotic systems. Its unique design characteristics rely on system-level optimization, rather than the more common practice of component optimization, to achieve miniaturization and integration. Using the most advanced semiconductor technology, the engine for the artificial retina is a 'system on a chip' of mixed voltages and mixed analog-digital design, which provides self-contained power and data management and other functionality. This design for the artificial retina facilitates both surgical procedures and regulatory compliance." The Argus II design consists of an external video camera system matched to the implanted retinal stimulator, which contains a microelectrode array that spans 20 degrees of visual field. The NSF BMES ERC has developed a prototype system with an array of more than 15 times as many electrodes and an ultra-miniature video camera that can be implanted in the eye. However, this prototype is many years away from being available for patient use. "The external camera system-built into a pair of glasses-streams video to a belt-worn computer, which converts the video into stimulus commands for the implant," says Weiland. "The belt-worn computer encodes the commands into a wireless signal that is transmitted to the implant, which has the necessary electronics to receive and decode both wireless power and data. Based on those data, the implant stimulates the retina with small electrical pulses. The electronics are hermetically packaged and the electrical stimulus is delivered to the retina via a microelectrode array." In 1998, Robert Greenberg founded Second Sight to develop the technology for the marketplace. While under development, the Argus I and Argus II systems have won wide recognition, including a 2010 Popular Mechanics Breakthrough Award and a 2009 R&D 100 Award, but it is only with FDA approval that the technology can now be made available to patients. "An artificial retina can offer hope to those with retinitis pigmentosa, as it may help them achieve a level of visual perception that enhances their quality of life, enabling them to perform functions of daily living more easily and the chance to enjoy simple pleasures we may take for granted," says Narayanan. "Such success is the result of fundamental studies in several fields, technology improvements based on those results and feedback from clinical trials--all enabled by sustained public and private investment from entities like NSF."  Contacts and sources: National Science Foundation, Source: Nano Patents And Innovation
Read More........

URI scientists believe birds can teach us about healthy eating


Want to know what kinds of foods prevent disease? Then watch what migratory birds eat during their stopovers on Block Island. Two University of Rhode Island scientists believe that birds choose certain berries because they offer protection against oxidative stress that occurs during long flights. Oxidative stress can lead to inflammation and a variety of diseases in birds and humans. The team's preliminary findings show that birds stopping over on Block Island favor the arrow-wood berry, which contains more anti-oxidants and pigments than the 11 other island berries studied by the researchers. Navindra Seeram, assistant professor of pharmacy and head of the Bioactive Botanical Research Laboratory at URI, and Scott McWilliams, URI professor of wildlife ecology and physiology, have teamed up to research migratory birds' eating habits and how their diets might be used to understand the role of berries rich in anti-oxidants in human health. Research has shown a diet rich in anti-oxidants can help prevent cancer and other serious illnesses. Seeram reported the findings today at the American Chemical Society's 239th national meeting in San Francisco. (Seeram will be interviewed about this on NPR's Science Friday, March 26.) ''We're suggesting that birds choose deeply colored berry fruits in part because of their anti-oxidant properties,'' Seeram said. About 11 years before Seeram arrived at URI, McWilliams began laying the foundation for the recent study. ''When I started studying birds during their migratory stopover on Block Island, I was impressed that most of the migratory birds ate berry fruits even though they usually eat insects or seeds at other times of the year,'' said McWilliams, who came to URI in 1999. ''I began studying the relationship between the nutritional qualities of fruits and how those nutrients might fuel migration.'' When Seeram arrived at URI two years ago, McWilliams saw a University story online that detailed Seeram's research interests. ''I saw the story about Navindra and in it he was talking about oxidative stress and inflammation and the effects berry fruits can have on reducing those impacts on people.'' So McWilliams, who does his research and teaches in the College of the Environment and Life Sciences, tracked down Seeram, who works in the College of Pharmacy. They developed their mutual research interests into a successful collaboration that included URI graduate student Jessica Bolser and post-doctoral researcher Liya Li, who works in Seeram's lab. Called the lynchpin between McWilliams and Seeram, Bolser spent months in the field on Block Island observing the birds' nutritional patterns and collecting batches of 12 different kinds of berries for their analysis of anti-oxidant levels. The research indicates that birds prefer to eat certain fruits that have more antioxidants and key nutrients. In return, the seeds in the berries are dispersed by the birds. ''It's the way plants ensure their survival. Birds eat the berries, digest them and defecate the seeds over wide areas,'' McWilliams said. ''Meanwhile, the birds are attracted to the berries because of their rich color, which we believe is a plant's response to the stress of constant exposure to the sun and other stresses. Berry color could be a plant's way of fighting oxidative stress. It's a partnership that benefits plant and bird.'' The Seeram-McWilliams partnership will continue. ''We've only measured a few of these anti-oxidants,'' Seeram said. ''Our next step is to determine how birds can detect these compounds.'' ''Whenever we exercise, we undergo oxidative stress, and the same is true for birds,'' McWilliams said. ''We're flying birds in wind tunnels to produce oxidative stress, and then we are going to see if anti-oxidants found in these berries alleviate that stress,'' McWilliams said. The research may benefit human health as well as bird conservation. If further research shows the direct link between bird health and diet, then the findings will play a critical role in habitat protection for migratory birds, McWilliams said. ''That's what is so great about URI,'' Seeram said. ''Because the University is small, without the usual bureaucratic walls, we can create these partnerships. This collaboration between professors in two separate colleges would not have happened so easily in other universities and produced results so quickly.''Source: Article
Read More........

Brighter Than 100 Billion Stars

Three-dimensional simulation of a Type Ia supernova explosion, Image: F. K. Röpke MPI for Astrophysics, Garching
Modern astronomy began with a supernova. In November 1572, Danish astronomer Tycho Brahe discovered a new star – and destroyed the idea of a sky of fixed stars. Today, we know that Brahe was observing the death of a star, which ended in a massive explosion. Friedrich Röpke aims to find out how these supernova explosions proceed. The astrophysicist is now leader of the new research group "Physics of Stellar Objects" (PSO) at Heidelberg Institute for Theoretical Studies (HITS). As of March 1, 2015, he has been appointed professor for Theoretical Astrophysics at Heidelberg University. His workplace is HITS. This joint appointment is a perfect proof for the close cooperation between the two institutes. With Friedrich Röpke and Volker Springel, there now are two HITS astrophysicists who are also professors at Heidelberg University. “The new group is another important component of our concept, “ says Klaus Tschira who founded the HITS in 2010 as a non-profit research institute. “Research on stellar astrophysics, like Friedrich Röpke does, is a perfect complement of the work of Volker Springel’s group on large-scale processes like galaxy formation.“ Friedrich Röpke (40) studied Physics at the University of Jena and the University of Virginia, Charlottesville/USA, and received his PhD in 2003 from the Technische Universität München. In the following years, he worked as a postdoc at the Max-Planck-Institute for Astrophysics (MPA) in Garching and at the University of California, Santa Cruz/USA. In 2008, Friedrich Röpke habilitated at the TU München and also became leader of an Emmy Noether research group at MPA. Three years later, he got appointed professor for Astrophysics at the University of Würzburg. In 2010, the researcher was awarded the "ARCHES Award" by the German Federal Ministry for Education and Research together with Prof. Avishay Gal-Yam from the Weizmann Institute, Rehovot/Israel. The award honors young scientists whose work shows great potential to have noticeable impact on their respective fields of research. Friedrich Röpke studies Type Ia supernovae. Observation of these cosmic explosions allows astronomers to determine distances in space. In 2011, the Nobel Prize in Physics was awarded to researchers who proved the accelerated expansion of the Universe with supernovae. The PSO group collaborates closely with one of the laureates from 2011, Brian Schmidt (Australian National University, Canberra) in a program supported by the German Academic Exchange Service DAAD. Friedrich Röpke’s research aims to understand exactly what happens when stars die. Remnant of SN 1572 as seen in X-ray light from the Chandra X-ray Observatory. The supernova of 1572 is often called "Tycho's supernova", because of Tycho Brahe's extensive work De nova et nullius aevi memoria prius visa stella ("Concerning the Star, new and never before seen in the life or memory of anyone", published in 1573 with reprints overseen by Johannes Kepler in 1602, and 1610), a work containing both Tycho Brahe's own observations and the analysis of sightings from many other
Credit: Chandra X-ray Observatory.
observers. Together with other scientists, he used computer simulations to show that some highly-luminous supernovae are the result of two compact stars, so-called “white dwarfs", merging together. He also investigates alternatives by modeling the explosion of a white dwarf when it reaches its maximum stable mass (the so-called Chandrasekhar limit), using highly complex simulations on supercomputers. White dwarfs are only about the size of the Earth and are extremely dense. When they explode as supernova, they shine brighter than the whole galaxy. "Our detailed simulations helped us to predict data that closely reproduce actual telescope observations of Type Ia supernovae, " explains the astrophysicist. “Modelling of supernova explosions is, however, just one part of our research at HITS,” says Friedrich Röpke. “We also strive for a better understanding of how stars evolve and how the elements that make up our world are formed within them.” Classical astrophysics follows stellar evolution based on very simplifying assumptions. "To improve the predictive power of the models, we have to describe the physical processes taking place within stars in a dynamic way," says the astrophysicist. He and his group have developed a new computer code that – combined with the rapidly increasing capacities of supercomputers – opens new perspectives for the modelling of stars. In contrast to what we are used to from our solar system, most stars in the Universe exist as part of multiple star systems. The interaction between those stars greatly affects their evolution but the involved physical processes are poorly understood until today. The two astrophysics groups at HITS are cooperating on new computer simulations to bring some light into the darkness. Contacts and sources: Heidelberg Institute for Theoretical Studies, Source: inffableislamd.com
Read More........