Astronaut runs marathon in space — but slower than on earth

British astronaut Tim Peake in action running the London marathon while strapped to a treadmill at the International Space Station on Sunday April 24, 2016. AFP/ PTI photo
Washington, April 24: British astronaut Tim Peake became the first man to complete a marathon in space on Sunday, running the classic 26.2-mile distance while strapped to a treadmill aboard the International Space Station. As part of the London Marathon, Britain's biggest mass participation race, the 44-year-old spaceman saw London's roads under his feet in real time on an iPad as, 250 miles below him, more than 37,000 runners simultaneously pounded the streets. Peake covered the distance in three hours 35 minutes 21 seconds, which was a world away from the time recorded by the real race winner, Kenya's Eliud Kipchoge, whose 2:03:05 was the second fastest ever recorded. Peake's zero gravity effort, while out of this world, was still more than a quarter of an hour slower than the 3:18:50 he had clocked on earth as a keen, ultra-fit fun runner back in 1999. On a six-month stint on the ISS, the astronaut had been the official starter too, sending the runners a good luck video message from the station in the 10-second countdown to the race that concluded: "I hope to see you all at the finish line". He also tweeted a photograph of England's capital from space accompanied by the message: "Hello #London! Fancy a run? :)". Then, it was down to business, using elastic straps over his shoulders and around his waist to keep him in contact with the running belt in weightless conditions as he ran. — Reuters Source: http://www.tribuneindia.com
Read More........

World's first virtual reality rollercoaster

In a groundbreaking move that could revolutionise the world of theme parks, the UK's Alton Towers Resort announces today it is launching a rollercoaster entirely dedicated to virtual reality.
Set to open in April, Galactica is the world's first rollercoaster entirely customised for the full virtual reality experience, transforming riders into astronauts and plunging them into outer space with a G force of 3.5, which is more powerful than the 3G of a real rocket launch. The exhilarating new ride will combine the physical exertion and adrenaline rush of Alton Towers' iconic flying rollercoaster, with the breathtaking sensation of travelling through space. Cutting edge technology launches riders into a different world, complete with virtual space suits, stunning visuals and an exciting adventure. The visuals have been
perfectly  synchronised to the thrilling twists, turns and loops of the roller coaster to recreate the sensation of hurtling through space. Visitors will ride in a prone position along the 840-meter long (2,760 ft) track, to recreate the feeling of flying. Galactica's epic space theme is set to be hugely popular following Tim Peake's maiden voyage into space in December 2015. Stunning, high-quality visuals deliver an immersive experience that its designers claim is breathtakingly realistic. Each rider wears a modified Samsung Gear VR headset. Through this, an on-board artificial intelligence guides them from the launch pad up into space – flying and looping beyond the stars, banking through wormholes and speeding across distant galaxies, revealing the wonders of the cosmos in stunning clarity.Commenting on the new attraction, Marketing Director Gill Riley says: "Galactica uses groundbreaking technology to
give riders a breathtaking and completely unique rollercoaster experience. Tim Peake captured the imagination of millions of Brits last year when he set off on his mission to the International Space Station – and now our visitors can become astronauts too. "There is nowhere else in the world that people can experience the feeling of a flying rollercoaster combined with soaring through the universe. For two minutes, our guests will be transported into space and we believe Galactica showcases the future for theme parks around the world – it's a complete game changer!"Source: http://www.futuretimeline.net/
Read More........

Cheaper, More Reliable Solar Power with New World Record for Polymer Solar Cells

Credit: Stefan Jerrevång/Linkoping university
Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes. Polymer solar cells have in recent years emerged as a low cost alternative to silicon solar cells. In order to obtain high efficiency, fullerenes are usually required in polymer solar cells to separate charge carriers. However, fullerenes are unstable under illumination, and form large crystals at high temperatures. Polymer solar cells manufactured using low-cost roll-to-roll printing technology, demonstrated here by professors Olle Inganäs (right) and Shimelis Admassie. Now, a team of chemists led by Professor Jianhui Hou at the CAS set a new world record for fullerene-free polymer solar cells by developing a unique combination of a polymer called PBDB-T and a small molecule called ITIC. With this combination, the sun's energy is converted with an efficiency of 11%, a value that strikes most solar cells with fullerenes, and all without fullerenes. Feng Gao, together with his colleagues Olle Inganäs and Deping Qian at Linköping University, have characterized the loss spectroscopy of photovoltage (Voc), a key figure for solar cells, and proposed approaches to further improving the device performance. The two research groups are now presenting their results in the high-profile journal Advanced Materials. -We have demonstrated that it is possible to achieve a high efficiency without using fullerene, and that such solar cells are also highly stable to heat. Because solar cells are working under constant solar radiation, good thermal stability is very important, said Feng Gao, a physicist at the Department of Physics, Chemistry and Biology, Linköping University. -The combination of high efficiency and good thermal stability suggest that polymer solar cells, which can be easily manufactured using low-cost roll-to-roll printing technology, now come a step closer to commercialization, said Feng Gao. 
  • Contacts and sources: Feng Gao, Linköping University
  • Citation: Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability, by Wenchao Zhao, Deping Qian, Shaoqing Zhang, Sunsun Li, Olle Inganäs, Feng Gao and Jianhui Hou. Advanced Materials 2016. DOI: 10.1002/adma.201600281. Source:http://www.ineffableisland.com/
Read More........

The first high-res 3D images of DNA segments

Credit: Berkeley Lab
First-of-their-kind images by researchers at Berkeley Lab could aid in the use of DNA to build nanoscale devices.
An international team working at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has captured the first high-resolution 3-D images from individual double-helix DNA segments, attached at either end of gold nanoparticles. The images detail the flexible structure of the DNA segments, which appear as nanoscale "jump ropes". This unique imaging capability, pioneered by Berkeley Lab scientists, could aid in the use of DNA segments as building blocks for molecular devices that function as nanoscale drug-delivery systems, markers for biological research, and components for computer memory and electronic devices. It could also lead to images of disease-relevant proteins that have proven elusive for other imaging techniques, and of the assembly process that forms DNA from separate, individual strands. The shapes of the coiled DNA strands, which were sandwiched between polygon-shaped gold nanoparticles, were reconstructed in 3-D using a cutting-edge electron microscope
technique called individual-particle electron tomography (IPET).  This was combined with a protein-staining process and sophisticated software that provided structural details down to a scale of just 2 nanometres (nm), or about two billionths of a metre. "We had no idea about what the double-strand DNA would look like between the nanogold particles," said Gang Ren, a Berkeley Lab scientist who led the research. "This is the first time for directly visualising an individual double-strand DNA segment in 3-D." While the 3-D reconstructions show the basic nanoscale structure of the samples, Ren said the next step will be to improve the resolution to the sub-nanometre scale: "Even in this current state, we begin to see 3-D structures at 1- to 2-nanometre resolution," he said. "Through better instrumentation and improved computational algorithms, it would be promising to push the resolution to that visualising a single DNA
Berkeley Lab researchers Gang Ren (standing) and Lei Zhang. Photo by Roy Kaltschmidt/Berkeley Lab.
helix within an individual protein." The technique, he said, has already excited interest among some prominent pharmaceutical companies and nanotechnology researchers, and his science team already has dozens of related research projects being planned. In future studies, they could attempt to improve the imaging resolution for complex structures that incorporate more DNA segments as a sort of "DNA origami," Ren said. Researchers hope to build and better characterise nanoscale molecular devices using DNA segments that can, for example, store and deliver drugs to targeted areas in the body. "DNA is easy to program, synthesise and replicate, so it can be used as a special material to quickly self-assemble into nanostructures and to guide the operation of molecular-scale devices," he said. "Our current study is just a proof of concept for imaging these kinds of molecular devices' structures." His team's work is published in the journal Nature CommunicationsSource: futuretimeline.net
Read More........

Superluminous Supernova 20 Times Brighter Than 100 Billion Stars Wows Astronomers

Records are made to be broken, as the expression goes, but rarely are records left so thoroughly in the dust. Stunned astronomers have witnessed a cosmic explosion about 200 times more powerful than a typical supernova--events which already rank amongst the mightiest outbursts in the universe--and more than twice as luminous as the previous record-holding supernova. At its peak intensity, the explosion--called ASASSN-15lh--shone with 570 billion times the brightness of the Sun. If that statistic does not impress, consider that this luminosity level is approximately 20 times the entire output of the 100 billion stars comprising our Milky Way galaxy. The record-breaking blast is thought to be an outstanding example of a "superluminous supernova," a recently discovered, supremely rare variety of explosion unleashed by certain stars when they die. Scientists are frankly at a loss, though, regarding what sorts of stars and stellar scenarios might be responsible for these extreme supernovae. These are pseudo-color images showing the host galaxy before the explosion of ASASSN-15lh taken by the Dark Energy Camera (DECam) [Left], and the supernova by the Las Cumbres Observatory Global Telescope Network (LCOGT) 1-meter telescope network [Right]. As described in a new study published today in Science, ASASSN-15lh
Credit: The Dark Energy Survey, B. Shappee and the ASAS-SN team
is amongst the closest superluminous supernovae ever beheld, at around 3.8 billion light years away. Given its uncanny brightness and closeness, ASASSN-15lh might offer key clues in unlocking the secrets of this baffling class of celestial detonations. "ASASSN-15lh is the most powerful supernova discovered in human history," said study lead author Subo Dong, an astronomer and a Youth Qianren Research Professor at the Kavli Institute for Astronomy and Astrophysics (KIAA) at Peking University. "The explosion's mechanism and power source remain shrouded in mystery because all known theories meet serious challenges in explaining the immense amount of energy ASASSN-15lh has radiated." ASASSN-15lh was first glimpsed in June 2015 by twin telescopes with 14-centimeter diameter lenses in Cerro Tololo, Chile conducting the All Sky Automated Survey for SuperNovae (ASAS-SN), an international collaboration headquartered at The Ohio State University. (Hence ASASSN-15lh's somewhat menacing moniker.) These two tiny telescopes sweep the skies to detect suddenly appearing objects like ASASSN-15lh that are intrinsically very bright, but are too far away for human observers to notice. "ASAS-SN is the first astronomical project in history to frequently scan the entire optical sky for optical transients," said Krzysztof Stanek, professor of astronomy at the Ohio State University and the co-Principal Investigator of ASAS-SN. "Every time in science we open up a new discovery space, exciting findings should follow. The trick is not to miss them." Dong and colleagues immediately put out word about the sighting of ASASSN-15lh in order for as much data as possible to be gathered. Multiple, far larger ground-based telescopes across the globe, as well as NASA's Swift satellite, have since taken part in an intense observing campaign that continues to this day. In just the first four months after it went kablooie, so much energy beamed out of ASASSN-15lh that it would take our Sun in its current state more than 90 billion years to equal its emissions. By examining this bright, slowly fading afterglow, astronomers have gleaned a few basic clues about the origin of ASASSN-15lh. Using the 2.5-meter du Pont telescope in Chile, Dong's colleagues Ben Shappee and Nidia Morrell at the Carnegie Observatories in the United States took the first spectrum of ASASSN-15lh to identify the signatures of chemical elements scattered by the explosion. This spectrum puzzled the ASAS-SN team members, for it did not resemble any of spectra from the 200 or so supernovae the project had discovered to date. These are two of the 14-centimeter diameter lens telescopes in use for the All Sky Automated Survey for SuperNovae (ASAS-SN) that discovered ASASSN-15lh. Since this photo was taken, two more
Credit: Wayne Rosing
telescopes have been added to the ASAS-SN station in Cerro Tololo, Chile. Inspired by suggestions from Jose Prieto at Universidad Diego Portales and Millennium Institute of Astrophysics in Chile and Stanek, Dong realized that ASASSN-15lh might in fact be a superluminous supernova. Dong found a close spectral match for ASASSN-15lh in a 2010 superluminous supernova, and if they were indeed of a kind, then ASASSN-15lh's distance would be confirmable with additional observations. Nearly 10 days passed as three other telescopes, stymied by bad weather and instrument mishaps, attempted to gather these necessary spectra. Finally, the 10-meter South African Large Telescope (SALT) secured the observations of elemental signatures verifying ASASSN-15lh's distance and extreme potency. "Upon seeing the spectral signatures from SALT and realizing that we had discovered the most powerful supernova yet, I was too excited to sleep the rest of the night," said Dong, who had received word of the SALT results at 2 AM in Beijing on July 1, 2015. The ongoing observations have further revealed that ASASSN-15lh bears certain features consistent with "hydrogen-poor" (Type I) superluminous supernovae, which are one of the two main types of these epic explosions so named for lacking signatures of the chemical element hydrogen in their spectra. ASASSN-15lh has likewise shown a rate of temperature decrease and radius expansion similar to some previously discovered Type I superluminous supernova. Yet in other ways, besides its brute power, ASASSN-15lh stands apart. It is way hotter, and not just brighter, than its apparently nearest of supernova kin. The galaxy it calls home is also without precedent. Type I superluminous supernova seen to date have all burst forth in dim galaxies both smaller in size and that churn out stars much faster than the Milky Way. Noticing the pattern, astronomers hoped this specific sort of galactic environment had something to do with superluminous supernovae, either in the creation of the exotic stars that spawn them or in setting these stars off. Exceptionally, however, ASASSN-15lh's galaxy appears even bigger and brighter than the Milky Way. On the other hand, ASASSN-15lh might in fact reside in an as-yet-unseen, small, faint neighboring galaxy of its presumed, large galactic home. To clear up where exactly ASASSN-15lh is located, as well as numerous other mysteries regarding it and its hyper-kinetic ilk, the research team has been granted valuable time this year on the Hubble Space Telescope. With Hubble, Dong and colleagues will obtain the most detailed views yet of the aftermath of ASASSN-15lh's stunning explosion. Important insights into the true wellspring of its power should then come to light. One of the best hypotheses is that superluminous supernovae's stupendous energy comes from highly magnetized, rapidly spinning neutron stars called magnetars, which are the leftover, hyper-compressed cores of massive, exploded stars. But ASASSN-15lh is so potent that this compelling magnetar scenario just falls short of the required energies. Instead, ASASSN-15lh-esque supernovae might be triggered by the demise of incredibly massive stars that go beyond the top tier of masses most astronomers would speculate are even attainable. "The honest answer is at this point that we do not know what could be the power source for ASASSN-15lh," said Dong. "ASASSN-15lh may lead to new thinking and new observations of the whole class of superluminous supernova, and we look forward to plenty more of both in the years ahead." 
Contacts and sources:  Jim Cohen: The Kavli Institute for Astronomy and Astrophysics (KIAA) 

More information:
Read More........