Scientists develop blood-based marker to spot acute sleep deprivation

New Delhi, March 10 (IANS) A team of scientists has developed a blood test that can detect when someone has not slept for 24 hours, also called sleep deprivation.

This level of sleep deprivation increases the risk of serious injury or fatality in safety critical situations, according to experts at Monash University in Australia, and the University of Birmingham in the UK.

The biomarker detected whether individuals had been awake for 24 hours with a 99.2 per cent probability of being correct, according to the study published in the journal Science Advances.

“This is a really exciting discovery for sleep scientists, and could be transformative to the future management of health and safety relating to insufficient sleep,” said Clare Anderson, a professor of Sleep and Circadian Science at the University of Birmingham in the UK.

With about 20 per cent of road accidents worldwide caused by sleep deprivation, researchers hope the discovery may inform future tests to quickly and simply identify sleep deprived drivers.

“There is strong evidence that less than five hours’ sleep is associated with unsafe driving, but driving after being awake for 24 hours, which is what we detected here, would be at least comparable to more than double the Australian legal limit of alcohol performance wise,” Anderson added.

The test may be also ideal for future forensic use but further validation is required.This sleep deprivation biomarker is based on 24 hours or more awake, but can detect down to 18 hours awake.Scientists develop blood-based marker to spot acute sleep deprivation | MorungExpress | morungexpress.com
Read More........

Scientists Studying Crows Get Big Surprise –They’re So Smart They Understand the Concept of Zero

Chuck Homler, DBA Focus on Wildlife/CC license 4.0
Building on substantial evidence of crow consciousness, a German university has proven some crows can learn to recognize ‘zero’ as a counting unit. While that sounds ridiculous, zero is not nothing, rather it’s one of the most complex mathematical concepts devised—that something can and should represent nothing, not only as the base value, but as a placeholder. The work comes from the University of Tübingen in Germany, where professor Andreas Nieder works with carrion crows to perform intelligence tests. “The conception of “nothing” as number “zero” is celebrated as one of the greatest achievements in mathematics,” wrote Nieder in his paper. “We show that crows can grasp the empty set as a null numerical quantity that is mentally represented next to number one.” Exactly how this breakthrough was made is straightforward and did not involve birds watching Sesame Street. The crows were shown two sets of dots on a screen and were taught to indicate if the two screens had the same values. There could be between zero and four dots. Exactly as with 1, 2, 3, and 4—when the screens showed no dots, neurons in the crow’s brain demonstrated it was understanding this was a numeric value, but that it was a numeric value that contained nothing. Sometimes the crows made mistakes, often by thinking zero was in fact one, but it was rare they thought zero represented more than two. Counting Crows: It took human civilization at least until the 20th century BCE to firmly establish the empty or base value. At some point between the Akkadians and Old Babylonians, there was a symbol to represent a number was missing from a column, for example the 0 in 1,025 doesn’t mean the number is 26, it just means there are no hundreds in this number. As early as 1,770 the Egyptians were making hieroglyphs with the base value “nfr” from which began counting and distances. The ponderous Greeks never managed to capture the concept into their counting, language, or philosophy, meaning that as well as occasionally being smarter than a first grader, these “Counting Crows” were smarter in some ways than the Classical Greeks. Nieder contributed greatly to the current theory of animal consciousness, which is that it’s possible this highest level of thought isn’t necessarily bound to the presence of the cerebral cortex, a cranial region found only in primates, apes, and hominids. In an older experiment he trained two crows to peck at panels following a flash of blue light or red light, but Nieder made the task more difficult by changing the rules constantly, which required the crows to zoom out and look at the task as a whole, rather than simply assigning physical motions to a reward. He would change which light was assigned to which panel, and he would sometimes change the rules before the flash, and sometimes after the flash, constantly interrupting the birds’ base instructions. “These results suggest that the neural foundations that allow sensory consciousness arose either before the emergence of mammals or independently in at least the avian lineage and do not necessarily require a cerebral cortex,” wrote Nieder and the other authors in their corresponding paper published in Science.Scientists Studying Crows Get Big Surprise –They’re So Smart They Understand the Concept of Zero
Read More........

University of Delaware professor wins top bio-innovation prize

Aditja Kunjapur PHOTO: AAAS.org

Biomolecular engineer Aditya Kunjapur, assistant professor at the University of Delaware, Newark, Delaware, recently won the 2024 BioInnovation Institute & Science Prize for Innovation,

Kunjapur and his colleagues have found a way to create bacteria that build and incorporate a key amino acid into their own proteins, making it easier to fight infections.

For this work toward building a better platform for possible ifuture bacterial vaccines, Kunjapur is the winner of the 2024 BioInnovation Institute & SciencePrize for Innovation, the American Association for the Advancement of Science announced April 5, in a news item on aaas.org.

“The prize seeks to reward scientists who deliver research at the intersection of the life sciences and entrepreneurship,” it noted.

“Dr. Kunjapur’s outstanding research demonstrates the potential to engineer live bacterial cells to produce and incorporate nitrated amino acids into antigenic proteins, thus shining a spotlight on these proteins for the human immune system,” Michael Funk, senior editor at Science is quoted saying in the new release. “This work provides a platform for antigen engineering that is adaptable, specific, and amenable to safety controls.”

Vaccines against bacterial infections would likely decrease the need for antibiotic medicines, which in turn could stem the development of antibiotic resistance in some key drugs, AAAS noted.

Kunjapur estimates that bacterial vaccines will have an estimated global market size of $39.6 billion by 2030.

In his winning essay published April 5 in Science, Kunjapur writes — “our primary hypothesis is that engineering cells to access a broader chemical repertoire of building blocks can improve live bacterial vaccine efficacy.”

According to the news report, Kunjapur saw potential in a building block from earlier research in which a bacterial protein was modified with a non-standard amino acid called para-nitro-L-phenylalanine (nitro-Phe). The combination “triggered sustained production of antibodies in mice, suggesting that the altered amino acid was making it easier for the immune system to access or recognize the bacterial protein,” the news report noted.

Kunjapur and colleagues programmed E. coli bacterial cells to produce their own nitro-Phe and incorporate it into target proteins. The altered proteins hold the potential of becoming the basis for a live bacterial vaccine, the researchers suggest.

“In principle, the nitro-Phe modified protein produced by the engineered bacteria within a patient would lead to a targeted, sustained, and protective immune response towards bacterial pathogens,” even versions of the protein that haven’t been nitrated, Kunjapur is quoted saying.

Kunjapur also indicated that his team’s bioengineering strategy could work with other bacteria as well, not just E coli.

“We could also continue to use E. coli as a platform vector that makes recombinant proteins that belong to other bacteria,” he said. “So you can pick your chassis or your protein delivery vehicle, but the proteins you choose to nitrate should determine what immune cells respond to.”

Kunjapur hopes to work toward a vaccine for staph infections. The Covid pandemic came in the way of procuring funding for expanding his work, so Kunjapur used his own funds for the patent application.

“At the time I had cautious optimism in investing in new potential vaccine modalities during the height of a pandemic, but a lot of it was also a bet on the people behind the idea and our collaborators,” he said.

Kunjapur co-founded Nitro Biosciences, Inc. with his postdoc, Neil Butler, to pursue the nitro-Phe technology. He said starting the company has made him think more about who is going to use the technology, and what kind of criteria and metrics they need to know so that it can be used successfully.

The BioInnovation Institute & Science Prize for Innovation, the editors of Science “seek to recognize bold researchers who are asking fundamental questions at the intersection of the life sciences and entrepreneurship. We seek scientists who can show that they have reached across field boundaries with an enthusiasm that combines outstanding basic science with an eye toward application in the marketplace,” Science.org says on its website.

Located in Copenhagen, Denmark, the BioInnovation Institute foundation (BII) is an international commercial foundation with a nonprofit objective supported by the Novo Nordisk Foundation. “BII operates an incubator to accelerate world-class life science innovation that drives the development of new solutions by early life science start-ups for the benefit of people and society,” the Science.org website said. University of Delaware professor wins top bio-innovation prize
Read More........

In World First, Scientists Share What Was Almost Certainly a Conversation with a Humpback Whale

Photo by Christopher Michel, CC license

In a world first, marine biologists were able to have a discourse with a humpback whale, pushing out the boundaries of cooperation and understanding that could be possible between our two species.

An adult female humpback whale, known as Twain, in Southeast Alaska, was located along with a group of whales and called with a recording of another humpback’s “whup/throp” call.

The recording was made by whales of the same group the day before, but the team didn’t know if the calls recorded were made by the same whale or were part of an exchange between two or more whales. To find out, the researchers conducted the trial on two days, with the first to find out if the whup calls they had recorded would be socially acceptable.

It turned out that whatever the whale(s) had been saying the day before was appropriate as far as Twain was concerned, and after the team broadcast the playback, she drifted away from her group and participated both physically and acoustically in three phases of interaction with the crew and their boat including periods of engagement, agitation, and disengagement.

First she called back, then she circled the boat three times, surfaced, and dived again. After this interaction, she gradually left.

Twain’s whup calls on day 2 and the whup calls recorded on day 1 were acoustically analyzed for both spectral and temporal features, specifically the inter-call interval, or latency between calls as measured by the time difference between the preceding call’s offset and the subsequent call’s onset.

The scientists determined that this metric would be able to determine both arousal and valence, thereby allowing them to get some idea of the emotional content of the exchange. The results indicated that substantial variation was found among the latencies in Twain’s calling behavior, which they took to mean excitement or arousal.

“After playing the contact call three times, we got this huge response,” said Brenda McCowan told the BBC. “Then, to keep the animal engaged, I started trying to match the latency of her calls to our calls. So, if she waited 10 seconds, I waited 10 seconds. We ended up matching each other. We did this 36 times over a 20-minute period.”

Twain’s calls were significantly shorter during engagement than either during the period defined as agitation, when she was circling the boat ejecting air through her blowhole, or as she was leaving.

The BBC reports that the songs of the humpback whale are thought to be among the most complex in the animal kingdom.A strong point of the whole experiment was that the results were determined with a degree of blinding—via independent, uninformed observers reporting on surface behavior and respiratory activity of the interacting whale.In World First, Scientists Share What Was Almost Certainly a Conversation with a Humpback Whale
Read More........

Scientists Discover Potential HIV Cure that Eliminates Disease from Cells Using CRISPR-Cas Gene Editing

HIV-1 virus particles under electron micrograph with H9 T-cells (in blue) – Credit: National Institute of Allergy and Infectious Diseases
A new study has unveiled a likely future cure for HIV which uses molecular scissors to ‘cut out’ HIV DNA from infected cells. To cut out this virus, the team used CRISPR-Cas gene editing technology—a groundbreaking method that allows for precise alterations to a patient’s genome, for which its inventors won the Nobel Prize in Chemistry in 2020. One of the significant challenges in HIV treatment is the virus’s ability to integrate its genome into the host’s DNA, making it extremely difficult to eliminate—but the CRISPR-Cas tool provides a new means to isolate and target HIV DNA. Because HIV can infect different types of cells and tissues in the body, each with its own unique environment and characteristics, the researchers are searching for a way to target HIV in all of these situations. In this study, which is to be presented ahead of this year’s European Congress of Clinical Microbiology and Infectious Diseases, the authors used CRISPR-Cas and two guide RNAs against “conserved” HIV sequences. They focused on parts of the virus genome that stay the same across all known HIV strains and infected T cells. Their experiments showed outstanding antiviral performance, managing to completely inactivate HIV with a single guide RNA and cut out the viral DNA with two guide RNAs. “We have developed an efficient combinatorial CRISPR-attack on the HIV virus in various cells and the locations where it can be hidden in reservoirs, and demonstrated that therapeutics can be specifically delivered to the cells of interest,” said Associate professor Elena Herrera Carrillo from the University of Amsterdam AMC. “These findings
HIV AIDS virus (in yellow) infecting a human cell – Credit: National Cancer Institute
represent a pivotal advancement towards designing a cure strategy.” The team has a long way to go before their cure will be available to patients, but said, “These preliminary findings are very encouraging’. Currently, HIV can be kept in check with anti-retroviral medication, but no one has actually been cured—although three patients receiving stem cell transplants for blood cancer were subsequently declared free of the disease when their HIV became undetectable. “We hope to achieve the right balance between efficacy and safety of this CURE strategy,” said Dr. Carrillo. “Only then can we consider clinical trials of ‘cure’ in humans to disable the HIV reservoir.“Our aim is to develop a robust and safe combinatorial CRISPR-Cas regimen, striving for an inclusive ‘HIV cure for all’ that can inactivate diverse HIV strains across various cellular contexts. Scientists Discover Potential HIV Cure that Eliminates Disease from Cells Using CRISPR-Cas Gene Editing
Read More........