NASA Curiosity Rover Team Selects Second Drilling

This map shows the location of "Cumberland," the second rock-drilling target for NASA's Mars rover Curiosity, in relation to the rover's first drilling target, "John Klein," within the southwestern lobe of a shallow depression called "Yellowknife Bay." Image credit: NASA/JPL-Caltech/Univ. of Arizona.
The team operating NASA's Curiosity Mars rover has selected a second target rock for drilling and sampling. The rover will set course to the drilling location in coming days. This second drilling target, called "Cumberland," lies about nine feet (2.75 meters) west of the rock where Curiosity's drill first touched Martian stone in February. Curiosity took the first rock sample ever collected on Mars from that rock, called "John Klein." The rover found evidence of an ancient environment favorable for microbial life. Both rocks are flat, with pale veins and a bumpy surface. They are embedded in a layer of rock on the floor of a shallow depression called "Yellowknife Bay." This second drilling is intended to confirm results from the first drilling, which indicated the chemistry of the first powdered sample from John Klein was much less oxidizing than that of a soil sample the rover scooped up before it began drilling. "We know there is some cross-contamination from the previous sample each time," said Dawn Sumner, a long-term planner for Curiosity's science team at the University of California at Davis. "For the Cumberland sample, we expect to have most of that cross-contamination come from a similar rock, rather than from very
This patch of bedrock, called "Cumberland," has been selected as the second target for drilling by NASA's Mars rover Curiosity. Image credit: NASA/JPL-Caltech/MSSS.
different soil." Although Cumberland and John Klein are very similar, Cumberland appears to have more of the erosion-resistant granules that cause the surface bumps. The bumps are concretions, or clumps of minerals, which formed when water soaked the rock long ago. Analysis of a sample containing more material from these concretions could provide information about the variability within the rock layer that includes both John Klein and Cumberland. Mission engineers at NASA's Jet Propulsion Laboratory in Pasadena, Calif., recently finished upgrading Curiosity's operating software following a four-week break. The rover continued monitoring the Martian atmosphere during the break, but the team did not send any
Mars Science Laboratory "Curiosity" self portrait. Image credit: NASA/JPL-Caltech
new commands because Mars and the sun were positioned in such a way the sun could have blocked or corrupted commands sent from Earth. Curiosity is about nine months into a two-year prime mission since landing inside Gale Crater on Mars in August 2012. After the second rock drilling in Yellowknife Bay and a few other investigations nearby, the rover will drive toward the base of Mount Sharp, a 3-mile-tall (5-kilometers) layered mountain inside the crater. JPL, a division of the California Institute of Technology, Pasadena, manages the Mars Science Laboratory Project, of which Curiosity is the centerpiece, for NASA's Science Mission Directorate in Washington. For more information about the mission, visit: http://www.nasa.gov/msl and http://mars.jpl.nasa.gov/msl . To follow the mission on Facebook and Twitter visit: http://www.facebook.com/marscuriosity and http://www.twitter.com/marscuriosity. Images (mentioned), Text, Credits: NASA / Dwayne Brown / JPL / Guy Webster. Cheers, Source: Orbiter.ch Space News
Read More........

Clothes of the future: where hi-tech meets high fashion

Photo: EPA
It seems impossible to survive in the modern world without going either “smart” or digital, and clothes are no exception. The fashion industry is now working on technology to bring dressing habits to a completely new level. We're still in the stone age of nano-fibres and networked apparel but, in the not too distant future, you can count on having a coat which tells your mom where you are and having the Encyclopaedia Britannica embedded in your underwear! According to IMS Research, about 14m wearable tech devices were produced in 2011; by 2016, the global market could reach $6bn. Nancy Tilbury, designer to the stars and one of the creators of the futuristic Studio XO, predicts, “Generation Digital are constantly connected and live their lives digitally. Clothes are the next logical step”. Though thought of now as innovation, tampering with textiles and technology has been going on for over a thousand years. Artisans have been wrapping fine golden and silver foil around fabric threads since as early as the reign of Queen Elizabeth I. At the end of the 19th century, with the advent of electric appliances, designers and engineers sought to combine electricity with clothing and jewellery; the so-called Electric Girl Lighting Company hired out young ladies wearing light-adorned evening gowns to brighten up cocktail parties. In 1968, the Body Covering exhibition in New York City presented new fruits of the tech-fashion relationship, that is, clothing that could inflate and deflate, light up, heat and cool itself. In the mid-1990s, a team of MIT researchers led by Steve Mann developed the so-called wearable computers, traditional computer hardware attached to and carried on the body. The baton was later handed over to another MIT group, including Maggie Orth and Rehmi Post, who explored the plausible integration of such devices into clothing. Modern e-textiles are distinguished by either classical electronic devices such as conductors, integrated circuits, LEDs, and conventional batteries embedded in garments or fabrics, or by Internet connectivity. Smart clothes have many virtues: they are universal, customised, and eco-friendly. More than that, designers promise to make their dresses change colour by the mere touch and never wear out; I can see the last quality being debated by fashionistas though. Nanotech fabric will repel stains that normal cloth would absorb, thanks to molecular nano shields against stains, without changing the texture of the fabric. Digitalised and web-enabled apparel in health care, sports, and military service will, and already do, facilitate collecting physiological data and diagnostics. By now, smart textiles and Web-enabled clothing have passed the R&D stage and are on the verge of throwing themselves into mass production. However, many of the finest examples of this symbiosis already wow audiences with their alien hi-tech looks or versatility. Wanda Nylon makes transparent raincoats which can change colour like a bug's wing and are also 90% recyclable and totally nature-friendly. Another eco-friendly project is Orange Power Wellies, created in collaboration with renewable energy experts GotWind. The unique sole of these wellies converts heat from the feet into an electrical current, which can be used to re-charge a mobile phone. The more their owner moves, the more energy they generate. CuteCircuit a couture recruited by stars, specialises on dresses with hundreds of LED lights embedded in the fabric and USB rechargeable. The company made a statement by creating a powered dress which could receive and display tweets in real time. This Twitter Dress contained 2000 LED lights and 3,000 Swarovski crystals. It was introduced at the launch party of EE, the U.K. first 4G mobile network, the commissioner of this wonder-garment. Among wearable tech garments that do serve a purpose is the Hovding bicycle helmet created by Swedish industrial designers. It only inflates at the moment of danger, otherwise stowed around a person's neck in the form of a stylish shawl. The sensors gather data from around the cyclist and should danger present, a futuristic helmet of tough nylon covers the rider's head. Some designers are more hung up on devising ways of incorporating social networking in a dress in the discreetest way possible. Seattle-based Electricfoxy came up with a Ping garment, which can connect to Facebook wirelessly and from anywhere. Functions are performed by lifting a hood, tying a bow, zipping or buttoning. If a friend sends a comment or a message back, the garment will notify its owner with a tap on the shoulder. To surprise and stand out, any technology goes, based on the classic lie detector test, SENSOREE has crafted the so-called "mood sweater" which changes colour depending on mood through a number of sensors on the person's hands. When the sweater's owner is nervous, it lights up red and when calm in blue. The smart use of body heat was discovered by the Netherlands-based company Studio Roosegaarde, its high-tech garments entitled 'Intimacy White' and 'Intimacy Black' are made out of opaque smart e-foils which turn from black or white to transparent when exposed to body heat. Smart garments are not solely designed to turn heads, though, the armed services are one area in need of innovation. Smart uniforms will instantly detect gunshot wounds or even traces of nuclear, biological or chemical attacks in blood and sweat; they can report a fallen soldier's location with GPS coordinates and pass along other critical information for battlefield medics. Sensatex Inc. is already working with the military, emergency workers, and doctors to design what it calls a “smart shirt”; clothing featuring tiny microscopic wires interwoven with the fabric itself. This garment, turned into a communication device, could one day perform remote physiological monitoring or even heat up or cool down depending on the weather. "Throughout society, the ability to unplug from wires and utilise smart textiles to gather information through wireless communication will really be the textile of the future," said Sensatex CEO, Robert Kalik. The use of web-enabled clothing is vastly explored and introduced in areas like medicine and sport where continuity and precision of data are vital. Smart fibres are used to monitor systems in maternal and paediatric units where precise observation is constantly needed. Several companies, like Intelligent Clothing, are already engaging in these activities and create the first tele-monitoring systems, with Internet connectivity, for infants. A group of Ukrainian developers at the Microsoft Imagine Cup competition in 2012 made another smart use of smart fabrics. Their Enable Talk gloves help translate the sign language used by deaf-mute people. The glove sensors read gestures and translate them into words transmitted through bluetooth to a smartphone screen. Electricfoxy has developed the special MOVE technology for sports apparel which focuses on measuring precision in exercises such as yoga or pilates. The sensors transmit information to a mobile app which analyses the position and helps eliminate future errors. Besides, it stores all the information from previous training sessions to keep track of progress. It's clear that one day, while getting dressed in front of the mirror we might catch ourselves thinking how right the Star Wars author was. E-foils, nano cells, glowing LEDs and going online just by, quite literally, lifting your finger. People are however willing to go a long way in revealing their own physiological data; the fact that marketeers may be taking personal data and using it to support their advertising efforts might seem disturbing. When advertisers, and anyone else for that matter, have records of the customers' sleeping and eating habits, daily routine and physical activity and even certain medical conditions they acquire a certain power. Giving away information to strangers through social networks is already an issue, though seemingly inevitable in the modern world of computerised records, it still needs to be treated with caution. Source: Voice Of Russia
Read More........