Recyclers Switch from Smelting to Solvents, Recovering Precious Metals from E-waste with Fewer Emissions

credit Unsplash Vlad

A startup in the UK is recovering important manufacturing metals without energy-hungry smelting methods.

Using an intense solvent at room temperature, shredded circuit boards can have plastic retaining components left behind, while metals like gold, cobalt, and copper are selectively dissolved and made available for recovery with simple magnets.

It’s one part recycling research, one part national security, as governments around the world attempt to secure long-term supplies of these metals for tech and defense sectors.

Look across the hard news sections from around the world, from the financial pages to politics, conflict, and international development, and these days you’ll inevitably find two alternating terms that stand out for their relative novelty and repetition: ‘critical’ or ‘rare earth’ minerals.

These terms refer to what many Americans and Brits have taken for granted over the years: copper, lithium, nickel; which have now become key components in geopolitical strategies worldwide.

Yet one of the richest sources of these minerals in the West could be the circuit boards embedded in the millions of broken and discarded devices that pile up higher and higher every year.

“What you see with this pile of electricals is actually central to geopolitics at the moment,” Executive Director of nonprofit Material Focus in the UK, Scott Butler, told Reuters in front of a giant mound of discarded electronics, which his organization helps collect and ‘mine.’

“All the shenanigans of 2025 with calls on taking over [Greenland], disputes over land in Ukraine, big mines coming in Latin America, and geopolitical relations with China, this is all about the materials that’s inside this urban mine of tech. It’s lithium, it’s cobalt, it’s nickel, it’s gold, it’s aluminum, and steel. And this is why it’s really, really important. This isn’t just a pile of old tech, a pile of mess, this is the future.”

DEScycle uses deep eutectic solvents to extract metals from the UK’s electronic waste that would normally have been sent to Japan. Once there, the plastic components would be incinerated, and the metals recovered in a molten soup. Not only is there a large emissions impact from shipping it to Japan in the first place, but running the furnace as well.

But this is in a case where the E-waste was recycled, which is hardly the norm. In 2024 alone, the UN estimated that some three-fourths of all electronic waste wasn’t accounted for in recycling streams, leaving an estimated $62 billion worth of natural resources buried or sitting idly in landfills.

According to Reuters, DEScycle is set to incorporate its solvent-based method into the waste processing stream of a leading UK recycler, promising progress where little has been made.

Aware of the E-waste problem in its country, however, the Royal Mint has also been investing and sponsoring ways of extracting gold from discarded circuit boards in the UK, and in 2024 they opened a large processing plant for recovering this gold that boasts the capacity to break down 4,000 metric tons of circuit boards every year, amounting to hundreds of kilograms of the yellow metal.

But the really cool thing about the process is that the British government isn’t pocketing the gold, but rather minting standardized gold coins to back the shares of an electronically traded physical gold fund that allows investors to diversify into gold without any environmentally damaging mining activities taking place. Recyclers Switch from Smelting to Solvents, Recovering Precious Metals from E-waste with Fewer Emissions

Read More........

Biodegradable Plastic Made from Bamboo Is Stronger and Easy to Recycle

Bamboo forest – credit Bady Abbas, via Unsplash

GNN has reported previously on how versatile bamboo is for construction and craft, so it maybe shouldn’t be a surprise that researchers in China have found a way to turn this miracle plant into plastic.

While many biodegradable materials have already been developed for replacing lighter, flexible plastic, durable or rigid plastic replacements are few. The kinds of plastic used for tools, car interiors, and appliance exteriors have few if any biodegradable replacements.

Enter Dawei Zhao at Shenyang University of Chemical Technology in China’s far northeast, who has developed a method for turning cellulose from bamboo into a rigid yet biodegradable plastic that outperforms not only alternative biodegradable options, but plastic itself for mechanical strength and thermo-mechanical properties.

“Bamboo’s rapid growth makes it a highly renewable resource, providing a sustainable alternative to traditional timber sources, but its current applications are still largely limited to more traditional woven products,” Zhao told New Scientist.

His method takes cellulose from bamboo and subjects it to zinc chloride and a simple acid to break up the complex polysaccharide bonds that hold this plant fiber together. Next they add ethanol into the soup of smaller molecules, and from that derive a plastic for use in injection, molding, and machining manufacturing techniques.

One major drawback is the bamboo plastic’s inflexibility, which limits its incorporation into the full gamut of products that petroleum-based plastics can fulfil. On the other hand, however, these are often the plastics that remain in the ecosystem longest, and are the hardest to recycle. Therefore replacing them still represents a valuable contribution to reducing the overall plastic burden in the environment and waste streams.

Zhao and his team published a paper on the process and properties of the bamboo plastic in Nature, including in which is a cost-analysis that finds the bioplastic’s recyclability emerges as a value that sees it attain cost-competitiveness with conventional plastic. Biodegradable Plastic Made from Bamboo Is Stronger and Easy to Recycle
Read More........