Luminous ‘mother-of-pearl’ clouds explain why climate models miss so much Arctic and Antarctic warming

Katrin Meissner, UNSW Sydney; Deepashree Dutta, University of Cambridge, and Martin Jucker, UNSW Sydney

Our planet has warmed by about 1.2°C since 1850. But this warming is not uniform. Warming at the poles, especially the Arctic, has been three to four times faster than the rest of the globe. It’s a phenomenon known as “polar amplification”.

Climate models simulate this effect, but when tested against the past 40 years of warming, these models fall short. The situation is even worse when it comes to modelling past climates with very high levels of greenhouse gases.

This is a problem because these are the same models used to project into the future and forecast how the climate will change. They are likely to underestimate what will happen later this century, including risks such as ice sheet melting or permafrost thawing.

In our new research published today in Nature Geoscience we used a high-resolution model of the atmosphere that includes the stratosphere. We found a special type of cloud appears over polar regions when greenhouse gas concentrations are very high. The role of this type of cloud has been overlooked so far. This is one of the reasons why our models are too cold at the poles.

Polar Stratospheric Clouds over Norway (Night Lights Films - Adrien Mauduit)

Back to the future

Looking into past climates can give us glimpses of possible futures for a range of extreme conditions. For us, this means we can use Earth’s history to find out how well our climate models perform. We can test our models by simulating episodes in the past when Earth was much warmer. The advantage of this is that we have temperature reconstructions for these episodes to evaluate the models, as opposed to the future, for which measurements are not available.

If we go back 50 million years or so, our planet was very hot. Carbon dioxide (CO₂) concentrations ranged between 900 and 1,900 parts per million (ppm), compared with 415 ppm today. Methane (CH₄) concentrations were likely also much higher.

Canada’s arctic archipelago was covered in lush rainforests inhabited by alligators, turtles, lizards and mammals.

For these plants and animals to survive, conditions must have been warm and ice-free year-round. Indeed, surface ocean temperatures exceeded 20°C near the north pole (at about 87°N) and 25°C in the Southern Ocean (at about 67°S).

This period called the early Eocene is a perfect test bed for our models, because it was globally very warm, and the poles were even warmer, meaning it was a climate with extreme polar amplification. In addition, the Eocene is recent enough for temperature reconstructions to be available.

But as it turns out, the models fail again. They are much too cold at high latitudes. What are our models missing?

Alligators, turtles, lizards and mammals lived in the Arctic about 50 million years ago, when it was much warmer than today. Bradley GT, Shutterstock

Polar stratospheric clouds

In 1992 American paleoclimatologist Lisa Sloan suggested polar stratospheric clouds might have caused extreme warming at high latitudes in the past.

These clouds are a rare and beautiful sight today. They are also called nacreous or mother-of-pearl clouds for their vivid and sometimes luminous colours.

They form at very high altitudes (in the stratosphere) and at very low temperatures (over the poles). In the present day climate, they appear mainly over Antarctica, but have also been observed during winter months over Scotland, Scandinavia and Alaska, at times when the stratosphere was particularly cold.

Just like greenhouse gases, they absorb infrared radiation emitted by the Earth’s surface and re-emit a portion of this energy back to the surface. This suggests polar stratospheric clouds could be one of the missing puzzle pieces.

They warm the surface. And their effect could be significant, especially in winter, when the sun does not rise. But they are difficult to simulate in a climate model, so most models ignore them. This omission could explain why climate models miss some of the polar warming, because they miss a process that warms the poles.

Three decades after Sloan’s paper, a few atmosphere models are finally complex enough to allow us to test her hypothesis. In our research we use one of them and find that under certain conditions, the additional warming due to these polar stratospheric clouds exceeds 7°C during the winter months. This significantly reduces the gap between climate models and temperature evidence from the early Eocene. Sloan was right.

Implications for future projections

Our research explains why climate models don’t work so well for past climates when greenhouse gas levels were much higher than they are today. But what about the future? Should we be concerned?

There is some good news. While polar stratospheric clouds do warm the poles, they won’t be as common in the future as they were in the distant past, even if both CO₂ and CH₄ reach very high levels.

This is due to another difference between the Eocene and today: the position of continents and mountains, which were different back then and which also influence the formation of polar stratospheric clouds. So even if we hit early Eocene levels of CH₄ and CO₂ in the future, we would expect less polar stratospheric cloud to be formed. This suggests the standard climate models are better at predicting the future than the past.

It’s therefore unlikely the Arctic and Antarctica will be covered by these beautiful clouds anytime soon. But our research shows evidence from past climates can reveal processes that only become important when greenhouse gas concentrations are high. Some of these processes are not included in our models because models are tested against present day observations and other processes simply seemed more important to include. Looking into the past is a way of broadening our horizon and learning for the future.The Conversation

Katrin Meissner, Professor and Director of the Climate Change Research Centre, UNSW, UNSW Sydney; Deepashree Dutta, Postdoctoral Research Associate, University of Cambridge, and Martin Jucker, Lecturer in Atmospheric Dynamics, UNSW Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More........

Polar bears may struggle to produce milk for their cubs as climate change melts sea ice

During their time onshore, polar bear mothers may risk their survival by continuing to nurse when food is not available. (Shutterstock) Louise Archer, University of Toronto

When sea ice melts, polar bears must move onto land for several months without access to food. This fasting period is challenging for all bears, but particularly for polar bear mothers who are nursing cubs.

Our research, published in Marine Ecology Progress Series, found that polar bear lactation is negatively affected by increased time spent on land when sea ice melts.

Impaired lactation has likely played a role in the recent decline of several polar bear populations. This research also indicates how polar bear families might be impacted in the future by continued sea-ice loss caused by climate warming.

Challenges of rearing cubs

While sea ice might appear as a vast and perhaps vacant ecosystem, the frozen Arctic waters provide an essential platform for polar bears to hunt energy-rich seals — the bread and butter of their diet.

Sea ice is a dynamic environment that can vary through time and in different regions of the Arctic. Polar bears in Canada’s western Hudson Bay area experience seasonal sea ice, which melts in the warmer summer months, forcing the polar bears to move onto land until cooler winter temperatures cause the sea ice to refreeze.

On shore, polar bears often remain in a fasting state, using their body stores of fat for fuel. (Shutterstock)

While on shore, hunting opportunities are rare and polar bears generally spend their time in a fasting state. Polar bears rely on their immense body fat stores to fuel them during these leaner months, with some individuals measuring almost 50 per cent body fat when they come onshore in early summer.

While on land, polar bears can lose around a kilogram of body mass per day, so making it to the end of the ice-free season requires them to carefully manage their energy. For most polar bears, this means reducing activity levels and conserving energy until the sea ice returns and seal hunting can resume.

Females with cubs must also factor in the additional burden of lactation. Polar bears produce high-energy milk, which — at up to 35 per cent fat — is like whipping cream. This high-fat milk allows cubs to grow quickly, increasing from just 600 grams at birth to well over 100 kilograms by the time they are around two-and-a-half years old and leave their mothers to become independent.

During the onshore fasting period, polar bear mothers face a difficult trade-off: Stop lactating and risk the health of her growing cubs or continue nursing and risk her own survival as her energy reserves are depleted.

Polar bear cubs remain with their mothers for up to two-and-a-half years. (Shutterstock)

Moderating lactation

Although lactation is important to both mothers and cubs, studies on polar bear lactation are relatively rare.

To better understand how females manage their lactation investment, our research team revisited a data set of polar bear milk samples collected in the late 1980s and early 1990s from polar bears on land during the ice-free period.

We estimated how long each polar bear mom had been fasting based on annual sea-ice breakup dates and found that the energy content of their milk declined the more days spent onshore. Some bears had stopped producing milk entirely. Both milk energy content and lactation probability were negatively related to the mother’s body condition, meaning females in poor body condition had to prioritize their own energetic needs over their cubs.

The bears who reduced their investment in lactation benefited by using up less of their body reserves, meaning they could fast for longer. Yet the cubs who received lower energy milk grew more slowly than offspring of females that maintained their lactation effort. In the long term, this may reduce cub survival and, ultimately, negatively affect population dynamics.

Climate change and population declines

After around three months on land, the probability of a female with cubs lactating was 53 per cent. This dropped to 35 per cent for a female with yearlings (older cubs from the previous year).

The data in our study were collected around three decades ago. Since then, climate warming has meant that the ice-free season in western Hudson Bay has been extending by around seven days per decade. Polar bears are now regularly forced to spend more than four months on land.

As the ice-free season has increased and polar bears must go for longer without food, their average body condition has declined. The ability of female polar bears to nurse their cubs has probably also become increasingly impaired.

This may have contributed to the 50 per cent decline in the population size of the western Hudson Bay population over the last four decades, and is likely to contribute to further declines if climate warming and sea-ice declines continue as projected without mitigation.

This research adds another piece to our understanding of polar bear resilience to climate change. Without action to halt climate warming and sea-ice loss, survival of cubs will be at risk across the Arctic.The Conversation

Louise Archer, Postdoctoral Fellow, Biological Sciences, University of Toronto

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More........