What our missing ocean float revealed about Antarctica’s melting glaciers

Pete Harmsen, CC BY-ND
Steve Rintoul, CSIRO; Esmee van Wijk, CSIRO; Laura Herraiz Borreguero, CSIRO, and Madelaine Gamble Rosevear, University of Tasmania

Sometimes, we get lucky in science. In this case, an oceanographic float we deployed to do one job ended up drifting away and doing something else entirely.

Equipped with temperature and salinity sensors, our Argo ocean float was supposed to be surveying the ocean around the Totten Glacier, in eastern Antarctica. To our initial disappointment, it rapidly drifted away from this region. But it soon reappeared further west, near ice shelves where no ocean measurements had ever been made.

Drifting in remote and wild seas for two-and-a-half years, the float spent about nine months beneath the massive Denman and Shackleton ice shelves. It survived to send back new data from parts of the ocean that are usually difficult to sample.

Measurements of the ocean beneath ice shelves are crucial to determine how much, and how quickly, Antarctica will contribute to sea-level rise.

Argo floats are autonomous floats used in an international program to measure ocean conditions like temperature and salinity. Peter Harmsen, CC BY-ND

What are Argo ocean floats?

Argo floats are free-floating robotic oceanographic instruments. As they drift, they rise and fall through the ocean to depths of up to 2 kilometres, collecting profiles of temperature and salinity. Every ten days or so they rise to the surface to transmit data to satellites.

These floats have become a mainstay of our global ocean observing system. Given that 90% of the extra heat stored by the planet over the past 50 years is found in the ocean, these measurements provide the best thermometer we have to track Earth’s warming.

Little buoy lost

We deployed the float to measure how much ocean heat was reaching the rapidly changing Totten Glacier, which holds a volume of ice equivalent to 3.5 metres of global sea-level rise. Our previous work had shown enough warm water was reaching the base of the ice shelf to drive the rapid melting.

To our disappointment, the float soon drifted away from Totten. But it reappeared near another ice shelf also currently losing ice mass and potentially at risk of melting further: the Denman Glacier. This holds ice equivalent to 1.5m of global sea-level rise.

The configuration of the Denman Glacier means it could be potentially unstable. But its vulnerability was difficult to assess because few ocean measurements had been made. The data from the float showed that, like Totten Glacier, warm water could reach the cavity beneath the Denman ice shelf.

Our float then disappeared under ice and we feared the worst. But nine months later it surfaced again, having spent that time drifting in the freezing ocean beneath the Denman and Shackleton ice shelves. And it had collected data from places never measured before.

The Denman Glacier in east Antarctica. Pete Harmsen, CC BY-ND

Why measure under ice?

As glaciers flow from the Antarctic continent to the sea, they start to float and form ice shelves. These shelves act like buttresses, resisting the flow of ice from Antarctica to the ocean. But if the giant ice shelves weaken or collapse, more grounded ice flows into the ocean. This causes sea level to rise.

What controls the fate of the Antarctic ice sheet – and therefore the rate of sea-level rise – is how much ocean heat reaches the base of the floating ice shelves. But the processes that cause melting in ice-shelf cavities are very challenging to observe.

Ice shelves can be hundreds or thousands of metres thick. We can drill a hole through the ice and lower oceanographic sensors. But this is expensive and rarely done, so few measurements have been made in ice-shelf cavities.

The Denman and Shackleton glaciers. NASA, CC BY-ND

What the float found

During its nine-month drift beneath the ice shelves, the float collected profiles of temperature and salinity from the seafloor to the base of the shelf every five days. This is the first line of oceanographic measurements beneath an ice shelf in East Antarctica.

There was only one problem: because the float was unable to surface and communicate with the satellite for a GPS fix, we didn’t know where the measurements were made. However, it returned data that provided an important clue. Each time it bumped its head on the ice, we got a measurement of the depth of the ice shelf base. We could compare the float data to satellite measurements to work out the likely path of the float beneath the ice.

These measurements showed the Shackleton ice shelf (the most northerly in East Antarctica) is, for now, not exposed to warm water capable of melting it from below, and therefore less vulnerable.

However, the Denman Glacier is exposed to warm water flowing in beneath the ice shelf and causing the ice to melt. The float showed the Denman is delicately poised: a small increase in the thickness of the layer of warm water would cause even greater melting.

What does this mean?

These new observations confirm the two most significant glaciers (Denman and Totten) draining ice from this part of East Antarctica are both vulnerable to melt caused by warm water reaching the base of the ice shelves.

Between them, these two glaciers hold a huge volume of ice, equivalent to five metres of global sea level rise. The West Antarctic ice sheet is at greater risk of imminent melting, but East Antarctica holds a much larger volume of ice. This means the loss of ice from East Antarctica is crucial to estimating sea level rise.

Both the Denman and Totten glaciers are stabilised in their present position by the slope of the bedrock on which they sit. But if the ice retreated further, they would be in an unstable configuration where further melt was irreversible. Once this process of unstable retreat begins, we are committed. It may take centuries for the full sea-level rise to be realised, but there’s no going back.

In the future, we need an array of floats spanning the entire Antarctic continental shelf to transform our understanding of how ice shelves react to changes in the ocean. This would give us greater certainty in estimating future sea-level rise.The Conversation

Steve Rintoul, CSIRO Fellow, CSIRO; Esmee van Wijk, Vanwijk, CSIRO; Laura Herraiz Borreguero, Physical oceanographer, CSIRO, and Madelaine Gamble Rosevear, Postdoctoral Fellow in Physical Oceanography, University of Tasmania

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More........

Scale of microplastics in Antarctic revealed in preliminary survey results

(Image: IAEA)

By Alex Hunt, World Nuclear News, in Vienna

The first results of the pioneering scientific research project launched earlier this year have catalogued microplastic particles in the sea water, sediment and animals in Antarctica.

The preliminary results were outlined during an International Atomic Energy Agency (IAEA) General Conference session focusing on the study, which is supported by Argentina and forms part of the wider IAEA NUTEC plastics initiative, which aims to use nuclear technologies to tackle plastic pollution.

Nathalie Bernard, from the IAEA Marine Environment Laboratories and University of Buenos Aires, unveiling the results, said that "sadly we have found microplastics everywhere, on every sample, every matrix". She said that the concentrations of microplastics varied by location and by day.

More than 250 samples were collected from the Almirante Irizer icebreaker, which sailed 27,209 kilometres over 125 days covering 84 sampling stations. Over the course of a week 166 samples were collected from Argentina's Carlini research station base as part of what was described as the first study of microplastics pollution from South America to Antarctica.

The samples were of water, of sediment and also of penguin droppings and shellfish. Bernard said: "All of these results were possible thanks to nuclear techniques, specifically vibrational microspectroscopy which allows us not only to count, but also identify polymers. We were able to analyse particles as small as 20 microns (WNN note: for comparison a human hair is about 100 microns) and this is important because we found out that almost 90% of the particles we analysed were smaller than 100 microns and ... most of the studies conducted before have focused on larger particles, larger than 300 microns, which clearly overlooks the larger majority."

The preliminary results - with 30% of the samples analysed so far, found that in terms of distribution in water, in Buenos Aires it was 256 microplastic particles per litre, compared with 5 microplastics particles per litre in the Antarctic Ocean and 21 microplastics particles per litre at Carlini Station in the Antarctic.

The Carlini samples found 6000-15,000 microplastic particles per kilogramme of sediment, 15 microplastic particles per square metre of sand and 200-4000 microplastic particles per biological sample of shellfish or penguin droppings.

The prevalence and type of microplastics was shown to the session (Image: WNN photo/IAEA/Bernard slide)

There were 11 different types of plastics found in the samples, 62% were "Teflon-like microplastics" and 29% were polyethylene-like. Examples of the types of products using the types of plastics found included frying pans, PVC pipes and plastic drinks bottles.

The early theories about the possible sources of the pollution in Antarctica include fisheries, local human activities and global sources, via the atmosphere or ocean currents.

Bernard said that the conclusions of the preliminary study was that "we know now that microplastics are everywhere, that we can find different levels and types between the sites and that the levels in Antarctica are relatively low if we compare them with highly populated industrial zones - but they are far away from zero, which is what it was thought to be until recently in Antarctica.".

The next steps are to finalise the analysis and do extra checks before sharing the results globally and using the figures as a baseline for future surveys, to assess possible pollution sources and inform policy makers for local and global actions in line with the Antarctic Treaty.

The meeting also heard progress reports on the United Nations actions to end plastics pollution and how the NUTEC initiative can help with plastics upcycling using irradiation to allow plastic waste to not just be traditionally recycled, but also used in cement or in wood/plastic composits - one of the examples given was Argentina using radiation-modified railway sleepers from plastic waste.

Argentina's Foreign Affairs Minister Diana Mondino said that the country was one of the original signatories of the Antarctic Treaty and said: "There's growing concern in understanding the impact in the Antarctic ecosystem from plastics and microplastics." She said the results had prompted the creation of a regional group in Latin America led by Argentina to focus on the issue.

IAEA Director General Rafael Mariano Grossi said the NUTEC initiative had been well received because "we do have a serious problem with microplastics, nanoplastics and we did also have a scarcity of information, objective information". He said having the facts was important so people can take "informed decisions when it comes to the protection of this environment, which is so pristine and that we all care for".

"This is not a simple environmental endeavour that we take for the sake of knowing a little bit more - the idea is that we provide important information that is relevant for fisheries, relevant for very important economic activities in all our countries."

Australia's ambassador Ian Biggs said that Australia had a major stake in the international effort in Antarctica and he said that according to projections there could soon be a tonne of plastic in the ocean for every three tonnes of fish, saying this showed the necessity of action to tackle plastic pollution and he said Australia believed that the NUTEC programme was "making a real difference in helping countries address pressing global challenges on plastic pollution".

More than 400 samples were taken during the study (Image: Still from IAEA video)
The background

The IAEA's NUTEC plastics scheme was established in 2020 and uses a series of monitoring laboratories to use nuclear technology to sample and analyse microplastics - which are bits of plastic less than 5 millimetres in diameter - in the environment. There are more than 60 countries participating in monitoring of microplastics in the sea, and the goal is to equip more than 50 laboratories with the technology to form a global monitoring network.

The aim is to then be able to take action to bring in measures designed to reduce the sources of the pollution - at least 30 countries are involved in developing innovative recycling technology, including using irradiation to treat plastics and make them fit for reuse, or for a wider range of reuses. This process uses gamma and electron beam radiation technologies to modify certain types of plastic waste, breaking down plastic polymers judged not to be of sufficient quality into smaller components and then allowing them to be used to generate new plastic products.

The IAEA cites studies suggesting that only around 10% of plastic produced between 1950 and 2015 has been recycled, with the majority (about 60%) going to landfill, meaning action is imperative given estimates that there will be one tonne of plastic for every three tonnes of fish within a few years.

Grossi visited an IAEA mission in Antarctica in January with Argentina's president to see the start of work for the project, with the IAEA explaining that "there is still almost no information available on where and how much microplastics arrive in the Antarctic and how much is taken up by Antarctic organisms. There is also very little data existing on the types of microplastics reaching this pristine area through ocean currents, atmospheric deposition and the presence of humans in the Antarctic".It also said the "presence of microplastics can contribute to accelerating the ice-loss in Antarctica by reducing ice reflectivity, altering surface roughness, promoting microbial activity, acting as thermal insulators, and contributing to mechanical weakening of the ice structure". Scale of microplastics in Antarctic revealed in preliminary survey results
Read More........