Carbon Glow of Galaxies At 'Cosmic Dawn' Observed

When galaxies first assembled, during a period often referred to as 'Cosmic Dawn,' most of the space between the stars was filled with a mixture of hydrogen and helium produced in the Big Bang. As subsequent generations of massive stars ended their brief but brilliant lives as supernovas, they seeded the interstellar medium with a fine dust of heavy elements, mostly carbon, silicon, and oxygen, which are forged in their nuclear furnaces. Astronomers study the elements scattered between the stars to learn about the internal workings of galaxies, their motion and chemistry. To date, however, attempts to detect the telltale radio signature of carbon in the very early Universe have been thwarted, perhaps -- as some have speculated -- by the need to allow a few billion years more for stars to manufacture sufficient quantities to be observed across such vast cosmic distances. New observations with the Atacama Large Millimeter/submillimeter Array (ALMA), however, readily detected the first faint traces of carbon atoms permeating the interstellar atmospheres of so-called normal galaxies, seen only one billion years after the Big Bang. This suggests that even though normal galaxies in the very early Universe were already brimming with carbon, they were not nearly as chemically evolved as similar galaxies observed just a few billion years...
Read More........

The Council Of Giants And Earth's Place In The Universe

Credit: Marshall McCall / York University We live in a galaxy known as the Milky Way – a vast conglomeration of 300 billion stars, planets whizzing around them, and clouds of gas and dust floating in between. Though it has long been known that the Milky Way and its orbiting companion Andromeda are the dominant members of a small group of galaxies, the Local Group, which is about 3 million light years across, much less was known about our immediate neighbourhood in the universe. An animation that illustrates the positions of the nearby galaxies, including those in the "Council of Giants, " in three dimensions.  Now, a new paper by York University Physics & Astronomy Professor Marshall McCall, published today in the Monthly Notices of the Royal Astronomical Society, maps out bright galaxies within 35-million light years of the Earth, offering up an expanded picture of what lies beyond our doorstep. "All bright galaxies within 20 million light years, including us, are organized in a 'Local Sheet' 34-million light years across and only 1.5-million light years thick," says McCall. "The Milky Way and Andromeda are encircled by twelve large galaxies arranged in a ring about 24-million light years across – this 'Council of Giants' stands in gravitational judgment of the Local Group by restricting its range of influence."...
Read More........

NASA's Kepler Provides Insights on Enigmatic Planets

Artist's view of a Earth-size rocky exoplanet. Image credit: NASA/JPL-Caltech More than three-quarters of the planet candidates discovered by NASA's Kepler spacecraft have sizes ranging from that of Earth to that of Neptune, which is nearly four times as big as Earth. Such planets dominate the galactic census but are not represented in our own solar system. Astronomers don't know how they form or if they are made of rock, water or gas. The Kepler team today reports on four years of ground-based follow-up observations targeting Kepler's exoplanet systems at the American Astronomical Society meeting in Washington. These observations confirm the numerous Kepler discoveries are indeed planets and yield mass measurements of these enigmatic worlds that vary between Earth and Neptune in size. Included in the findings are five new rocky planets ranging in size from 10 to 80 percent larger than Earth. Two of the new rocky worlds, dubbed Kepler-99b and Kepler-406b, are both 40 percent larger in size than Earth and have a density similar to lead. The planets orbit their host stars in less than five and three days respectively, making these worlds too hot for life as we know it. A major component of these follow-up observations was Doppler measurements of the planets' host stars. The team measured the reflex wobble of the host star, caused...
Read More........