Google files patent for wearable medical device

Google has filed a patent application for a wearable medical device, able to use nanoparticles to detect and treat illnesses such as cancer.
For those wishing to protect their health and extend their lifespan, a futuristic medical device may become available in the next several years. Details of this wearable technology – known as a Nanoparticle Phoresis – have been published online by Google, via the World Intellectual Property Organisation. The patent application describes a strap, or band, mounted on the lower arm. Similar in appearance to a wristwatch, it would "automatically modify or destroy one or more targets in the blood that have an adverse health effect." This would be achieved by beaming energy into blood vessels to stimulate cells and molecules, increasing their effectiveness at fighting diseases. It could even be used on synthetic nanoparticles. Millions of these tiny objects would be introduced into the wearer's bloodstream, then activated by magnets in the wristband and directed to specific locations. In addition to its physical treatment abilities, the Nanoparticle Phoresis could generate vast amounts of data – not only helpful to the user, but also to researchers and doctors. It could accept inputs from the wearer regarding his or her health state, such as "feeling cold," "feeling tired," "pollen allergy symptoms today," "stressed," "feeling energetic," etc. According to the patent, these user inputs "may be used to complement any other physiological parameter data that the wearable device may collect and establish effective signal levels for and timing of modification of the target." Analysts forecast that wearable technology will see huge growth in the coming years, with unit sales potentially reaching into the
hundreds of millions. This new device from Google – if successfully developed – could become part of that rapidly evolving ecosystem. Initially aimed at patients who are seriously ill, this product (or its derivatives) could also be offered to mainstream consumers who aren't necessarily in bad health, but wish to monitor and improve their well-being. For those with a needle phobia, injections might be possible using high-pressure jets. Although the patent itself makes no mention of this, we can speculate that such a procedure would eventually be incorporated into a wristwatch form factor. Similar to the "hypospray" on Star Trek, these jets would ensure that the skin is not punctured. High-pressure jet injection was covered on our blog in May 2012. Looking further ahead, the prospects become even more exciting. Bill Maris – who helped form Google Calico – this month stated his belief that humans will live to be many centuries old in the future, while today's cancer treatments will seem "primitive" within just 20 years. His comments echo those of futurist and inventor Ray Kurzweil, also employed at Google and currently involved in AI research for the company. Kurzweil predicts that nanoparticles will be superseded by nanobots – small and compact enough to feature motors, sensors and other tools, allowing them to be controlled with extreme precision directly inside cells. If this idea sounds like science fiction, then consider this: a handheld smartphone today contains more processing power than a room-sized supercomputer of the 1980s. With ongoing advances in miniaturisation, together with new materials such as graphene, the future trend seems inevitable. As humans become ever more dependent on technology, our bodies will gradually begin to incorporate these and similar devices on a permanent basis. Later in the 21st century, the line between man and machine could become blurred. Source: Article
Read More........

Scientists make printer that needs no ink, only water


Scientists have created a printer that uses just water to print instead of ink. After about 22 hours, the paper fades back to a plain sheet of white paper, allowing it to be reused. A group of chemists assert that the “water-jet” technology, that is capable of reprinting numerous times, spares people their money and saves trees.
"Several international statistics indicate that about 40 percent of office prints [are] taken to the waste paper basket after a single reading," Sean Xiao-An Zhang, a chemistry professor at Jilin University in China, who supervised the work, said. The paper alone is not ordinary at all, as it is coated with an invisible dye that shows color when water hits it. Later on, the print slowly fades away within a matter of 22 hours, but disappears much faster if exposed to high levels of heat. According to the designers, the print comes out clear and the technology is not expensive at all. "Based on 50 times of rewriting, the cost is only about 1 percent of the inkjet prints," Zhang said in a video. If one page were reused just 12 times, the cost would only be one-seventeenth that of its inkjet counterpart. Zhang said dye-treating the paper, of the type generally used for printing, added about five percent to its price, but this is more than compensated for by the saving on ink. There is no need to change the printer, but the ink cartridge needs to be filled up with water with the help of a syringe. "Water is a renewable resource and obviously poses no risk to the environment," said the study. In the past, such ventures using disappearing ink gave way to low-contrast results at a high price, with some methods using questionable chemicals. Oxazolidine, a dye compound, is the type of mix Zhang and his group used to print off the paper, with clear blue showing in less than one second after the water was put on the page. Four water colors can be printed for the time being, which are blue, magenta, gold, and purple. However, only one color can be printed off at a time. The team hopes to make the resolution and duration time for printing better. Zhang said the dyed paper was "very safe" but toxicity tests are underway on mice to be sure. Voice of Russia, The Sydney Morning Herald Source: http://sputniknews.com/
Read More........