The world's first nation state in space

Credit: Asgardia
At a press conference in Paris this week, plans were announced for the creation of 'Asgardia' – the first nation state in outer space.

Named after the city of the skies in Norse mythology, Asgardia is a space-based nation proposed by Dr Igor Ashurbeyli, founder of the Aerospace International Research Centre (Vienna), and Chairman of UNESCO's Science of Space committee. The concept is aimed at creating a new framework for how space activities are regulated and owned, ensuring that "the future of space is peaceful and done for the benefit of humankind."

Dr Ashurbeyli, one of the Russian Federation's most distinguished scientists, has consulted globally renowned scientists, engineers, entrepreneurs and legal experts on the development of the concept. The project's official website is currently requesting people to register for "citizenship" with the aim of applying to the United Nations for official recognition as a nation state. Already, hundreds of thousands have signed up.

As a first step, the organisation plans to crowd-source a satellite for launch in 2017, sixty years after Sputnik 1, the first ever satellite. This will mark a new era in the space age, the organisation claims, as the satellite will be independent of any current nation state on Earth: the satellite will comprise the nation itself – creating its own legal system, flag and other symbols of nationhood.

"The project's concept comprises three parts – philosophical, legal and scientific/technological," Dr Ashburbeyli explained. "Asgardia is a fully-fledged and independent nation, and a future member of the United Nations – with all the attributes this status entails. The essence of Asgardia is 'Peace in Space', and the prevention of Earth's conflicts being transferred into space.

"Asgardia is also unique from a philosophical aspect: to serve entire humanity and each and everyone, regardless of his or her personal welfare and the prosperity of the country where they happened to be born. The scientific and technological component of the project can be explained in just three words – peace, access and protection. The scientific and technological envelope of Asgardia is a space arena for the scientific creativity of its citizens and companies in developing a broad range of future space technologies, products and services for humanity on Earth and humanity in space."


In recent years, access to space has been opening up, but the process remains slow and is tightly controlled by states on Earth, restricting commerce and scientific developments by private enterprise. Of the 196 nation states, just thirteen (China, France, India, Iran, Israel, Japan, North Korea, Russia/former USSR, South Korea, UK, Ukraine, USA) and one regional organisation (the European Space Agency, ESA) have independently launched satellites on their own indigenously developed launch vehicles.

Professor David Alexander, Director of the Rice Space Institute at Rice University in Texas: "As low-Earth orbit becomes more accessible, what's often called the 'democratisation' of space, a pathway is opening up to new ideas and approaches from a rich diversity of participants. The mission of Asgardia to create opportunities for broader access to space, enabling non-traditional space nations to realise their scientific aspirations is exciting."

Under current international space law, including the widely adopted Outer Space Treaty, states are required to authorise and supervise national space activities, including the activities of commercial and not-for-profit organisations. Objects launched into space are subject to their nation of belonging and if a nation launches an object into space, that nation is responsible for any damage that occurs internationally and in outer space.

Asgardia aims to create a new framework for ownership and nationhood in space, adapting current laws governing responsibility, private ownership and enterprise so they are fit for purpose in the new era of space exploration. By creating a new "space nation", private enterprise, innovation and the further development of space technology to support humanity could flourish, free from the tight restrictions of state control that currently exist.

Professor Ram Jakhu, Director, Institute of Air and Space Law at McGill University, Montreal, Canada: "An appropriate and unique global space legal regime is indispensable for governing outer space in order to ensure it is explored on a sustainable basis, for exclusively peaceful purposes and to the benefit of all humanity – including future generations living on planet Earth and in outer space. The development of foundational principles of such a legal regime ought to take place at the same time as technological progress is being made."


One of the early developments planned by Asgardia's team will be the creation of a state-of-the-art protective shield for all humankind from cosmic manmade and natural threats to life on Earth such as space debris, coronal mass ejections and asteroid collisions.

There are estimated to be more than 20,000 traceable objects of man-made space debris (MSD) including non-active spacecraft, upper-stage rockets and final stage vehicles, as well as fragments of craft that potentially pose a danger in near-Earth orbits. The impact of the Chelyabinsk meteorite which crashed over a Russian town as recently as 2013, injuring 1,100 people and damaging 4,000 buildings, is a reminder of the threat that natural objects pose to life on our planet.

Whilst steps have already been taken by the UN and the Space Mission Planning Advisory Group (SMPAG) to identify potentially hazardous scenarios, Asgardia will build on these developments to offer a more comprehensive mechanism.

Dr. Joseph N. Pelton, former Dean of the International Space University in Strasbourg, France: "The Asgardia project, among other things, may help prepare better answers to the future governance of outer space – a topic of major concern to the United Nations. The exciting aspect of this initiative is its three phase approach to providing broader access to space; promoting peace in outer space; and addressing cosmic hazards and planetary defence."

The Asgardia Project Team will comprise a collaborative, multi-disciplinary effort from leading experts around the globe which it is envisaged will grow over time as the project evolves. But as well as expert involvement in the project, Asgardia is looking to capture the wider public imagination by crowd-sourcing key aspects of the missions and involving members of the public in competitions – for example, to help design the nation's flag, insignia and other symbols of nationhood.

To coincide with the press conference, a website with further details was launched at www.asgardia.space. The project can also be followed on Twitter where updates will be provided, along with interaction between the Asgardia team and members of the public. ---Source: http://www.futuretimeline.net/
Read More........

Heartbeat Stars Vibrate or Ring, Their Changing Brightness Looks Like an Electrocardiogram

Credits: NASA/JPL-Caltech
Matters of the heart can be puzzling and mysterious -- so too with unusual astronomical objects called heartbeat stars.

Heartbeat stars, discovered in large numbers by NASA's Kepler space telescope, are binary stars (systems of two stars orbiting each other) that got their name because if you were to map out their brightness over time, the result would look like an electrocardiogram, a graph of the electrical activity of the heart. Scientists are interested in them because they are binary systems in elongated elliptical orbits. This makes them natural laboratories for studying the gravitational effects of stars on each other.

This artist's concept depicts "heartbeat stars," which have been detected by NASA's Kepler Space Telescope and others.

In a heartbeat star system, the distance between the two stars varies drastically as they orbit each other. Heartbeat stars can get as close as a few stellar radii to each other, and as far as 10 times that distance during the course of one orbit.

At the point of their closest encounter, the stars’ mutual gravitational pull causes them to become slightly ellipsoidal in shape, which is one of the reasons their light is so variable. This is the same type of "tidal force" that causes ocean tides on Earth. By studying heartbeat stars, astronomers can gain a better understanding of how this phenomenon works for different kinds of stars.

Tidal forces also cause heartbeat stars to vibrate or "ring" -- in other words, the diameters of the stars rapidly fluctuate as they orbit each other. This effect is most noticeable at the point of closest approach.

“You can think about the stars as bells, and once every orbital revolution, when the stars reach their closest approach, it's as if they hit each other with a hammer,” said Avi Shporer, NASA Sagan postdoctoral fellow at NASA's Jet Propulsion Laboratory, Pasadena, California, and lead author of a recent study on heartbeat stars. "One or both stars vibrate throughout their orbits, and when they get nearer to each other, it's as though they are ringing very loudly."

Kepler, now in its K2 Mission, discovered large numbers of heartbeat stars just in the last several years. A 2011 study discussed a star called KOI-54 that shows an increase in brightness every 41.8 days. In 2012, a subsequent study characterized 17 additional objects in the Kepler data and dubbed them "heartbeat stars." To characterize these unique systems, further data and research were required.

Shporer's study, published in the Astrophysical Journal, measured the orbits of 19 heartbeat star systems -- the largest batch ever characterized in a single study. The authors followed up on known heartbeat stars, previously identified by the Kepler mission. Specifically, they used an instrument on the W.M. Keck Observatory telescope in Hawaii called the High Resolution Echelle Spectrometer (HIRES), which measures the wavelengths of incoming light, which are stretched out when a star is moving away from us and shorter in motion toward us. This information allows astronomers to calculate the speed of the objects along the line of sight, and measure the shape of the orbit.

"We found that the heartbeat stars in our sample tend to be hotter than the sun and bigger than the sun," Shporer said. "But it is possible that there are others with different temperature ranges that we did not yet measure."

Study authors also postulate that some binary systems of heartbeat stars could have a third star in the system that has not yet been detected, or even a fourth star.

“The mere existence of heartbeat stars is a bit of a puzzle," said Susan Mullally (formerly Thompson), a SETI Institute scientist working for the Kepler Mission at NASA's Ames Research Center in Moffett Field, California, and co-author of the study. "All the tidal stretching of these heartbeat stars should have quickly caused the system to evolve into a circular orbit. A third star in the system is one way to create the highly stretched-out, elliptical orbits we observe."

Researchers are currently pursuing follow-up studies to search for third-star components in heartbeat star systems.

"We look forward to continued collaboration between ground and space observatories to better understand the complex inner workings of heartbeat stars," Shporer said.

NASA Ames manages the Kepler and K2 missions for NASA's Science Mission Directorate. JPL managed Kepler mission development. Ball Aerospace & Technologies Corporation operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. Work on this study was performed in part under contract with JPL funded by NASA through the Sagan Fellowship Program executed by the NASA Exoplanet Science Institute.

Read More........