URI scientists believe birds can teach us about healthy eating


Want to know what kinds of foods prevent disease? Then watch what migratory birds eat during their stopovers on Block Island. Two University of Rhode Island scientists believe that birds choose certain berries because they offer protection against oxidative stress that occurs during long flights. Oxidative stress can lead to inflammation and a variety of diseases in birds and humans. The team's preliminary findings show that birds stopping over on Block Island favor the arrow-wood berry, which contains more anti-oxidants and pigments than the 11 other island berries studied by the researchers. Navindra Seeram, assistant professor of pharmacy and head of the Bioactive Botanical Research Laboratory at URI, and Scott McWilliams, URI professor of wildlife ecology and physiology, have teamed up to research migratory birds' eating habits and how their diets might be used to understand the role of berries rich in anti-oxidants in human health. Research has shown a diet rich in anti-oxidants can help prevent cancer and other serious illnesses. Seeram reported the findings today at the American Chemical Society's 239th national meeting in San Francisco. (Seeram will be interviewed about this on NPR's Science Friday, March 26.) ''We're suggesting that birds choose deeply colored berry fruits in part because of their anti-oxidant properties,'' Seeram said. About 11 years before Seeram arrived at URI, McWilliams began laying the foundation for the recent study. ''When I started studying birds during their migratory stopover on Block Island, I was impressed that most of the migratory birds ate berry fruits even though they usually eat insects or seeds at other times of the year,'' said McWilliams, who came to URI in 1999. ''I began studying the relationship between the nutritional qualities of fruits and how those nutrients might fuel migration.'' When Seeram arrived at URI two years ago, McWilliams saw a University story online that detailed Seeram's research interests. ''I saw the story about Navindra and in it he was talking about oxidative stress and inflammation and the effects berry fruits can have on reducing those impacts on people.'' So McWilliams, who does his research and teaches in the College of the Environment and Life Sciences, tracked down Seeram, who works in the College of Pharmacy. They developed their mutual research interests into a successful collaboration that included URI graduate student Jessica Bolser and post-doctoral researcher Liya Li, who works in Seeram's lab. Called the lynchpin between McWilliams and Seeram, Bolser spent months in the field on Block Island observing the birds' nutritional patterns and collecting batches of 12 different kinds of berries for their analysis of anti-oxidant levels. The research indicates that birds prefer to eat certain fruits that have more antioxidants and key nutrients. In return, the seeds in the berries are dispersed by the birds. ''It's the way plants ensure their survival. Birds eat the berries, digest them and defecate the seeds over wide areas,'' McWilliams said. ''Meanwhile, the birds are attracted to the berries because of their rich color, which we believe is a plant's response to the stress of constant exposure to the sun and other stresses. Berry color could be a plant's way of fighting oxidative stress. It's a partnership that benefits plant and bird.'' The Seeram-McWilliams partnership will continue. ''We've only measured a few of these anti-oxidants,'' Seeram said. ''Our next step is to determine how birds can detect these compounds.'' ''Whenever we exercise, we undergo oxidative stress, and the same is true for birds,'' McWilliams said. ''We're flying birds in wind tunnels to produce oxidative stress, and then we are going to see if anti-oxidants found in these berries alleviate that stress,'' McWilliams said. The research may benefit human health as well as bird conservation. If further research shows the direct link between bird health and diet, then the findings will play a critical role in habitat protection for migratory birds, McWilliams said. ''That's what is so great about URI,'' Seeram said. ''Because the University is small, without the usual bureaucratic walls, we can create these partnerships. This collaboration between professors in two separate colleges would not have happened so easily in other universities and produced results so quickly.''Source: Article
Read More........

Brighter Than 100 Billion Stars

Three-dimensional simulation of a Type Ia supernova explosion, Image: F. K. Röpke MPI for Astrophysics, Garching
Modern astronomy began with a supernova. In November 1572, Danish astronomer Tycho Brahe discovered a new star – and destroyed the idea of a sky of fixed stars. Today, we know that Brahe was observing the death of a star, which ended in a massive explosion. Friedrich Röpke aims to find out how these supernova explosions proceed. The astrophysicist is now leader of the new research group "Physics of Stellar Objects" (PSO) at Heidelberg Institute for Theoretical Studies (HITS). As of March 1, 2015, he has been appointed professor for Theoretical Astrophysics at Heidelberg University. His workplace is HITS. This joint appointment is a perfect proof for the close cooperation between the two institutes. With Friedrich Röpke and Volker Springel, there now are two HITS astrophysicists who are also professors at Heidelberg University. “The new group is another important component of our concept, “ says Klaus Tschira who founded the HITS in 2010 as a non-profit research institute. “Research on stellar astrophysics, like Friedrich Röpke does, is a perfect complement of the work of Volker Springel’s group on large-scale processes like galaxy formation.“ Friedrich Röpke (40) studied Physics at the University of Jena and the University of Virginia, Charlottesville/USA, and received his PhD in 2003 from the Technische Universität MĂĽnchen. In the following years, he worked as a postdoc at the Max-Planck-Institute for Astrophysics (MPA) in Garching and at the University of California, Santa Cruz/USA. In 2008, Friedrich Röpke habilitated at the TU MĂĽnchen and also became leader of an Emmy Noether research group at MPA. Three years later, he got appointed professor for Astrophysics at the University of WĂĽrzburg. In 2010, the researcher was awarded the "ARCHES Award" by the German Federal Ministry for Education and Research together with Prof. Avishay Gal-Yam from the Weizmann Institute, Rehovot/Israel. The award honors young scientists whose work shows great potential to have noticeable impact on their respective fields of research. Friedrich Röpke studies Type Ia supernovae. Observation of these cosmic explosions allows astronomers to determine distances in space. In 2011, the Nobel Prize in Physics was awarded to researchers who proved the accelerated expansion of the Universe with supernovae. The PSO group collaborates closely with one of the laureates from 2011, Brian Schmidt (Australian National University, Canberra) in a program supported by the German Academic Exchange Service DAAD. Friedrich Röpke’s research aims to understand exactly what happens when stars die. Remnant of SN 1572 as seen in X-ray light from the Chandra X-ray Observatory. The supernova of 1572 is often called "Tycho's supernova", because of Tycho Brahe's extensive work De nova et nullius aevi memoria prius visa stella ("Concerning the Star, new and never before seen in the life or memory of anyone", published in 1573 with reprints overseen by Johannes Kepler in 1602, and 1610), a work containing both Tycho Brahe's own observations and the analysis of sightings from many other
Credit: Chandra X-ray Observatory.
observers. Together with other scientists, he used computer simulations to show that some highly-luminous supernovae are the result of two compact stars, so-called “white dwarfs", merging together. He also investigates alternatives by modeling the explosion of a white dwarf when it reaches its maximum stable mass (the so-called Chandrasekhar limit), using highly complex simulations on supercomputers. White dwarfs are only about the size of the Earth and are extremely dense. When they explode as supernova, they shine brighter than the whole galaxy. "Our detailed simulations helped us to predict data that closely reproduce actual telescope observations of Type Ia supernovae, " explains the astrophysicist. “Modelling of supernova explosions is, however, just one part of our research at HITS,” says Friedrich Röpke. “We also strive for a better understanding of how stars evolve and how the elements that make up our world are formed within them.” Classical astrophysics follows stellar evolution based on very simplifying assumptions. "To improve the predictive power of the models, we have to describe the physical processes taking place within stars in a dynamic way," says the astrophysicist. He and his group have developed a new computer code that – combined with the rapidly increasing capacities of supercomputers – opens new perspectives for the modelling of stars. In contrast to what we are used to from our solar system, most stars in the Universe exist as part of multiple star systems. The interaction between those stars greatly affects their evolution but the involved physical processes are poorly understood until today. The two astrophysics groups at HITS are cooperating on new computer simulations to bring some light into the darkness. Contacts and sources: Heidelberg Institute for Theoretical Studies, Source: inffableislamd.com
Read More........