University spinoff does geothermal with a carbon sequestration twist

Renewable Energy Magazine: The University of Minnesota is the US has launched a startup it says will provide renewable energy more economically than existing technologies by using sequestered CO2 rather than water to extract heat from geothermal wells. Heat Mining Company LLC, said in a written statement that the use of sequestered carbon dioxide will allow electricity to be provided from many more sites than would be possible with conventional water-based systems and does it more economically. “CO2 Plume Geothermal technology makes production of power using geothermal heat financially feasible, where water isn’t,” said Ken Carpenter, Managing Partner of South Dakota-based Heat startup. “This technology sits at the convergence of two conflicting demands in our society: the need to burn fossil fuels for the foreseeable future and the desire to reduce carbon emissions,” Carpenter said. CO2 Plume GeothermalTM (CPGTM) technology is an attractive solution for conventional fossil-fueled power plants, as it prevents emitted CO2, an environmental liability in the atmosphere, from being released to the air and uses it instead as the underground working fluid to extract geothermal heat for additional electricity production and/or district heating. In the process, the CO2 is permanently stored underground, resulting in a geothermal power plant with not only a neutral, but even a negative carbon footprint. The geothermal power facility can produce base-load power or provide peak-load power and thus also serve as a type of high-efficiency back-up “battery” for only intermittently available wind or solar power. “This technology has the potential to introduce a new era of electrical power production from renewable wind, solar, and geothermal energy as well as from traditional fossil fuels, while significantly reducing emissions of carbon dioxide to the atmosphere,” said Martin Saar, co-inventor and earth sciences professor in the university's College of Science and Engineering. The University of Minnesota submitted the technology for patents in March 2009 and licensed it exclusively, worldwide to Heat Mining Company LLC through the Office for Technology Commercialization. The approach was invented by Saar, Postdoctoral Fellow Jimmy Randolph, and Mechanical Engineering Professor Thomas Kuehn. Carbon capture and geologic CO2 sequestration is a fairly new solution for preventing CO2 emissions at fossil-fueled power plants. A typical coal-burning power plant produces between 3.5 and 5 million tons of CO2 per year, and it’s possible to retrofit existing plants, and design new plants, that capture the CO2 and sequester it underground. With a CPGTM system tapping into the underground CO2 and using it as a heat extraction fluid, power produced from earth's underground heat can be used for CO2 injection pumps while revenue from additional geothermal electricity sales can offset the very high costs of capturing the CO2 in the fossil-fueled power plant. In addition to producing renewable energy and preventing emissions, CPG could someday provide large scale storage of solar and wind energy. The technology could also supply power for enhanced oil recovery projects that produce oil from fields that have nearly reached the end of their productive lives. The CPG method has been demonstrated in computer simulations and details have been investigated in laboratory experiments. The next step is to build a pilot plant to test it in the field. Saar's research leading to the new technology was originally funded by the Initiative for Renewable Energy and the Environment (IREE), a signature program of the University of Minnesota’s Institute on the Environment (IonE). The initial research resulted in a significant federal grant from the U.S. Department of Energy as part of the American Recovery and Reinvestment Act (ARRA). Source: Renewable Energy Magazine
Read More........

Nuclear energy too expensive, too slow to battle climate change: report

Nuclear power as a renewable power option is more expensive and slower to implement than alternatives and therefore is not effective in the effort to battle the climate emergency, rather it is counterproductive, as the funds are then not available for more effective options, says a report on the status and trends of the international nuclear industry.
While the number of operating nuclear reactors has increased globally over the past year by four to 417 as of mid-2019, it remains significantly below historic peak of 438 in 2002, according to the World Nuclear Industry Status Report 2019 (WNISR2019), which is being released at the Central European University (CEU) in Budapest. Nuclear construction has been shrinking over the past five years with 46 units underway as of mid-2019, compared to 68 reactors in 2013 and 234 in 1979. The number of annual construction starts has fallen from 15 in the pre-Fukushima year (2010) to five in 2018 and, so far, one in 2019. The historic peak was in 1976 with 44 construction starts, more than the total in the past seven years. WNISR project coordinator and publisher Mycle Schneider stated: “There can be no doubt: the renewal rate of nuclear power plants is too slow to guarantee the survival of the technology. The world is experiencing an undeclared ‘organic’ nuclear phaseout.” Consequently, as of mid-2019, for the first time the average age of the world nuclear reactor fleet exceeds 30 years. However, renewables continue to outpace nuclear power in virtually all categories. A record 165 gigawatts (GW) of renewables were added to the world’s power grids in 2018; the nuclear operating capacity increased by 9 GW. Globally, wind power output grew by 29 per cent in 2018, solar by 13 per cent, nuclear by 2.4 per cent. Compared to a decade ago, nonhydro renewables generated over 1,900 TWh more power, exceeding coal and natural gas, while nuclear produced less. What does all this mean for the potential role of nuclear power to combat climate change? WNISR2019 provides a new focus chapter on the question. Diana Ãœrge-Vorsatz, Professor at the Central European University and Vice-Chair of the Intergovernmental Panel on Climate Change (IPCC) Working Group III, notes in her Foreword to WNISR2019 that several IPCC scenarios that reach the 1.5°C temperature target rely heavily on nuclear power and that “these scenarios raise the question whether the nuclear industry will actually be able to deliver the magnitude of new power that is required in these scenarios in a cost-effective and timely manner. This report is perhaps the most relevant publication to answer this pertinent question.” Over the past decade, levelised cost estimates for utility-scale solar dropped by 88 per cent, wind by 69 per cent, while nuclear increased by 23 per cent. New solar plants can compete with existing coal fired plants in India, wind turbines alone generate more electricity than nuclear reactors in India and China. But new nuclear plants are also much slower to build than all other options, eg, the nine reactors started up in 2018 took an average of 10.9 years to be completed. In other words, nuclear power is an option that is more expensive and slower to implement than alternatives and therefore is not effective in the effort to battle the climate emergency, rather it is counterproductive, as the funds are then not available for more effective options. The rather surprising outcome of the analyses is that even the extended operation of existing reactors is not climate effective as operating costs exceed the costs of competing energy efficiency and new renewable energy options and therefore durably block their implementation. “You can spend a dollar, a euro, a forint or a ruble only once: the climate emergency requires that investment decisions must favor the cheapest and fastest response strategies. The nuclear power option has consistently turned out the most expensive and the slowest,” Mycle Schneider concludes. The WNISR2019 assesses in 323 pages the status and trends of the international nuclear industry and analyses the potential role of nuclear power as an option to combat climate change. Eight interdisciplinary experts from six countries, including four university professors and the Rocky Mountain Institute’s co-founder and chairman emeritus, have contributed to the report.Source: https://www.domain-b.com
Read More........