DARPA brain implant for PTSD, brain injuries and other neurological and psychiatric disorders researched

Conceptual model of brain implant for PTSD and TBI, Courtesy of MGH and Draper Labs
Investigators at Massachusetts General Hospital (MGH) today announced a new research initiative designed to treat post-traumatic stress disorder (PTSD), traumatic brain injury (TBI), and other neurological and psychiatric disorders. The goal of the project, which is made possible by a $30 million grant from the Defense Advanced Research Projects Agency (DARPA), is to design and build a first-of-its-kind implantable deep brain stimulation (DBS) device which will monitor signals across multiple brain structures in real time. Based on the monitored activity, it will then deliver stimulation to key areas to alleviate symptoms related to neuropsychiatric disorders such asPTSD, severe depression, drug addiction, and TBI. “Deep brain stimulation has been shown to be an effective treatment for a variety of brain diseases, especially those involving movement like Parkinson’s disease,” says Emad Eskandar MD, director of functional neurosurgery at MGH and the project’s principal investigator.  “Our goal is to take DBS to the next level and create an implantable device to treat disorders like PTSD and TBI. Together with our partners we’re committed to developing this technology, which we hope will be a bold new step toward treating those suffering from these debilitating disorders,” says Eskandar. The initiative, called Transdiagnostic Restoration of Affective Networks by System Identification and Function Oriented Real-Modeling and Deep Brain Stimulation (TRANSFORM DBS), involves cross-hospital collaborations along with partners from the Massachusetts Institute of Technology (MIT), and Draper Labs.  The MGH-based team will include the departments of Neurosurgery, Psychiatry, Neurology, Anesthesia and Critical Care, and the Martinos Center for Biomedical Imaging. The TRANSFORM DBS team will also work closely with scientists at Draper Laboratories, who will be responsible for the engineering portions of the project. “We’re strongly encouraged by the previous data connected with this approach,” says Eskandar. “Our hope is that this project will not only restore quality of life for those affected, both military and civilian, but dramaticallychange the way we approach the treatment of neuropsychiatric disorders." Source: ineffableisland.com

Read More........

Asteroid To Give Earth A Record Setting Close Shave On February 15

Credit: NASA
Talk about a close shave. On Feb. 15th an asteroid about half the size of a football field will fly past Earth only 17,200 miles above our planet's surface. There's no danger of a collision, but the space rock, designated 2012 DA14, has NASA's attention. Since regular sky surveys began in the 1990s, astronomers have never seen an object so big come so close to our planet. "This is a record-setting close approach," says Don Yeomans of NASA's Near Earth Object Program at JPL. "Since regular sky surveys began in the 1990s, we've never seen an object this big get so close to Earth." Earth's neighborhood is littered with asteroids of all shapes and sizes, ranging from fragments smaller than beach balls to mountainous rocks many kilometers wide. Many of these objects hail from the asteroid belt, while others may be corpses of long-dead, burnt out comets. NASA's Near-Earth Object Program helps find and keep track of them, especially the ones that come close to our planet. 2012 DA14 is a fairly typical near-Earth asteroid. It measures some 50 meters wide, neither very large nor very small, and is probably made of stone, as opposed to metal or ice. Yeomans estimates that an asteroid like 2012 DA14 flies past Earth, on average, every 40 years, yet actually strikes our planet only every 1200 years or so. The impact of a 50-meter asteroid is not cataclysmic--unless you happen to be underneath it. Yeomans points out that a similar-sized object formed the mile wide Meteor Crater in Arizona when it struck about 50,000 years ago. "That asteroid was made of iron," he says, "which made it an especially potent impactor." Also, in 1908, something about the size of 2012 DA14 exploded in the atmosphere above Siberia, leveling hundreds of
square miles of forest. Researchers are still studying the "Tunguska Event" for clues to the impacting object. "2012 DA14 will definitely not hit Earth," emphasizes Yeomans. "The orbit of the asteroid is known well enough to rule out an impact." In this oblique view, the path of near-Earth asteroid 2012 DA14 is seen passing close to Earth on Feb. 15, 2013. Even so, it will come interestingly close. NASA radars will be monitoring the space rock as it approaches Earth closer than many man-made satellites. Yeomans says the asteroid will thread the gap between low-Earth orbit, where the ISS and many Earth observation satellites are located, and the higher belt of geosynchronous satellites, which provide weather data and telecommunications. "The odds of an impact with a satellite are extremely remote," he says. Almost nothing orbits where DA14 will pass the Earth. NASA's Goldstone radar in the Mojave Desert is scheduled to ping 2012 DA14 almost every day from Feb. 16th through 20th. The echoes will not only pinpoint the orbit of the asteroid, allowing researchers to better predict future encounters, but also reveal physical characteristics such as size, spin, and reflectivity. A key outcome of the observing campaign will be a 3D radar map showing the space rock from all sides. During the hours around closest approach, the asteroid will brighten until it resembles a star of 8thmagnitude. Theoretically, that’s an easy target for backyard telescopes. The problem, points out Yeomans, is speed. “The asteroid will be racing across the sky, moving almost a full degree (or twice the width of a full Moon) every minute. That’s going to be hard to track.” Only the most experienced amateur astronomers are likely to succeed. Those who do might experience a tiny chill when they look at their images. That really was a close shave. For more information about 2012 DA14 and other asteroids of interest, visit NASA’s Near-Earth Object Program web site: http://neo.jpl.nasa.gov, Author: Dr. Tony Phillips |Production editor: Dr. Tony Phillips | Credit: Science@NASAAsteroid To Give , Source: Nano Patents And Innovations
Read More........

Our brains take rhythmic snapshots of the world as we walk – and we never knew

For decades, psychology departments around the world have studied human behaviour in darkened laboratories that restrict natural movement.

Our new study, published today in Nature Communications, challenges the wisdom of this approach. With the help of virtual reality (VR), we have revealed previously hidden aspects of perception that happen during a simple everyday action – walking.

We found the rhythmic movement of walking changes how sensitive we are to the surrounding environment. With every step we take, our perception cycles through “good” and “bad” phases.

This means your smooth, continuous experience of an afternoon stroll is deceptive. Instead, it’s as if your brain takes rhythmic snapshots of the world – and they are synchronised with the rhythm of your footfall.

The next step in studies of human perception

In psychology, the study of visual perception refers to how our brains use information from our eyes to create our experience of the world.

Typical psychology experiments that investigate visual perception involve darkened laboratory rooms where participants are asked to sit motionless in front of a computer screen.

Often, their heads will be fixed in position with a chin rest, and they will be asked to respond to any changes they might see on the screen.

This approach has been invaluable in building our knowledge of human perception, and the foundations of how our brains make sense of the world. But these scenarios are a far cry from how we experience the world every day.

This means we might not be able to generalise the results we discover in these highly restricted settings to the real world. It would be a bit like trying to understand fish behaviour, but only by studying fish in an aquarium.

Instead, we went out on a limb. Motivated by the fact our brains have evolved to support action, we set out to test vision during walking – one of our most frequent and everyday behaviours.

Doing tests in a lab isn’t quite the same as seeing and interacting with things in the real world. sirtravelalot/Shutterstock

A walk in a (virtual) forest

Our key innovation was to use a wireless VR environment to test vision continuously while walking.

Several previous studies have examined the effects of light exercise on perception, but used treadmills or exercise bikes. While these methods are better than sitting still, they don’t match the ways we naturally move through the world.

Instead, we simulated an open forest. Our participants were free to roam, yet unknown to them, we were carefully tracking their head movement with every step they took.

Participants walked in a virtual forest while trying to detect brief visual ‘flashes’ in the moving white circle.

We tracked head movement because as you walk, your head bobs up and down. Your head is lowest when both feet are on the ground and highest when swinging your leg in-between steps. We used these changes in head height to mark the phases of each participant’s “step-cycle”.

Participants also completed our visual task while they walked, which required looking for brief visual “flashes” they needed to detect as quickly as possible.

By aligning performance on our visual task to the phases of the step-cycle, we found visual perception was not consistent.

Instead, it oscillated like the ripples of a pond, cycling through good and bad periods with every step. We found that depending on the phases of their step-cycle, participants were more likely to sense changes in their environment, had faster reaction times, and were more likely to make decisions.

Oscillations in nature, oscillations in vision

Oscillations in vision have been shown before, but this is the first time they have been linked to walking.

Our key new finding is these oscillations slowed or increased to match the rhythm of a person’s step-cycle. On average, perception was best when swinging between steps, but the timing of these rhythms varied between participants. This new link between the body and mind offers clues as to how our brains coordinate perception and action during everyday behaviour.

Next, we want to investigate how these rhythms impact different populations. For example, certain psychiatric disorders can lead to people having abnormalities in their gait.

There are further questions we want to answer: are slips and falls more common for those with stronger oscillations in vision? Do similar oscillations occur for our perception of sound? What is the optimal timing for presenting information and responding to it when a person is moving?

Our findings also hint at broader questions about the nature of perception itself. How does the brain stitch together these rhythms in perception to give us our seamless experience of an evening stroll?

These questions were once the domain of philosophers, but we may be able to answer them, as we combine technology with action to better understand natural behaviour.The Conversation

Matthew Davidson, Postdoctoral research fellow, lecturer, University of Sydney

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Read More........