Credit: ESA/Hubble, M. Kornmesser
NASA's Hubble Space Telescope has detected hydrogen and helium, but no water vapour, in the atmosphere of 55 Cancri e – the first time the atmosphere of a "super-Earth" has been analysed successfully. For the first time, astronomers were able to analyse the atmosphere of an exoplanet in the class known as super-Earths. Using data gathered with the NASA/ESA Hubble Space Telescope and new analysis techniques, the exoplanet 55 Cancri e is revealed to have a dry atmosphere without any indications of water vapour. The results, to be published in the Astrophysical Journal, indicate that the atmosphere consists mainly of hydrogen and helium. The international team, led by scientists from University College London (UCL), took measurements of the nearby exoplanet 55 Cancri e, a super-Earth with a mass of eight Earths. It is located in the planetary system of 55 Cancri, a star about 40 light-years from Earth. Using observations made by the Wide Field Camera 3 (WFC3) on board the NASA/ESA Hubble Space Telescope, the scientists were able to analyse the atmosphere in detail. The results were only made possible by exploiting a newly-developed processing technique. "This is a very exciting result,
because it's the first time that we have been able to find the spectral fingerprints that show the gases...
First detection of super-Earth atmosphere
Earth Collects 5 to 300 Tons of Cosmic Dust a Day

Image credit: ESO/Y. Beletsky
Currently, estimates of the Earth's intake of space dust vary from around five tons to as much as 300 tons every day. A €2.5 million international project, led by Professor John Plane from the University's School of Chemistry, will seek to address this discrepancy. Scientists at the University of Leeds are looking to discover how dust particles in the solar system interact with the Earth's atmosphere. Currently, estimates of the Earth's intake of space dust vary from around five tons to as much as 300 tons every day. A € 2.5 million international project, led by ERC Advanced grantee John Plane from the University's School of Chemistry, will seek to address this discrepancy. The Cosmic Dust in the Terrestrial Atmosphere (CODITA) project will investigate what happens to the dust from its origin in the outer solar system all the way to the earth's surface. The work, funded by the European Research Council, will also explore whether cosmic dust has a role in the Earth's climate and how it interacts with the ozone layer in the stratosphere. "People tend to think space is completely empty, but if all the dust between the Sun and Jupiter was compressed it would create a moon 16 miles across. It's surprising that we aren't more certain how much of this comes to Earth" said Professor Plane. "If the dust...
Subscribe to:
Posts (Atom)