First detection of super-Earth atmosphere

Credit: ESA/Hubble, M. Kornmesser
NASA's Hubble Space Telescope has detected hydrogen and helium, but no water vapour, in the atmosphere of 55 Cancri e – the first time the atmosphere of a "super-Earth" has been analysed successfully. For the first time, astronomers were able to analyse the atmosphere of an exoplanet in the class known as super-Earths. Using data gathered with the NASA/ESA Hubble Space Telescope and new analysis techniques, the exoplanet 55 Cancri e is revealed to have a dry atmosphere without any indications of water vapour. The results, to be published in the Astrophysical Journal, indicate that the atmosphere consists mainly of hydrogen and helium. The international team, led by scientists from University College London (UCL), took measurements of the nearby exoplanet 55 Cancri e, a super-Earth with a mass of eight Earths. It is located in the planetary system of 55 Cancri, a star about 40 light-years from Earth. Using observations made by the Wide Field Camera 3 (WFC3) on board the NASA/ESA Hubble Space Telescope, the scientists were able to analyse the atmosphere in detail. The results were only made possible by exploiting a newly-developed processing technique. "This is a very exciting result,
because it's the first time that we have been able to find the spectral fingerprints that show the gases present in the atmosphere of a super-Earth," explains Angelos Tsiaras, a PhD student at UCL, who developed the analysing technique, along with his colleagues Ingo Waldmann and Marco Rocchetto. "The observations of 55 Cancri e's atmosphere suggest that the planet has managed to cling on to a significant amount of hydrogen and helium from the nebula from which it originally formed." Super-Earths like 55 Cancri e are thought to be the most common type of planet in our galaxy. They acquired the name 'super-Earth' because they have a mass larger than that of the Earth, but are still much smaller than the gas giants in the Solar System. The WFC3 instrument on Hubble has already been used to probe the atmospheres of two other super-Earths, but no spectral features were found in those previous studies. 55 Cancri e, however, is an unusual super-Earth, as it orbits very close to its parent star. A year on the exoplanet lasts for only 18 hours and temperatures on the surface are thought to reach around 2000 degrees Celsius. Because the planet orbits its bright parent star at such a small distance, the team was able to use their new technique to extract key information about the planet, during its transits in front of the host star. Observations were made by scanning the WFC3 very quickly across the star to create a number of spectra. By combining these observations and processing them through analytic software, the researchers were able to retrieve the spectrum of 55 Cancri e embedded in the light of its parent star. "This result gives a first insight into the atmosphere of a super-Earth. We now have clues as to what the planet is currently like and how it might have formed and evolved, and this has important implications for 55 Cancri e and other super-Earths," said Giovanna Tinetti, also from UCL. Intriguingly, the data also contain hints of the presence of hydrogen cyanide, a marker for carbon-rich atmospheres. "Such an amount of hydrogen cyanide would indicate an atmosphere with a very high ratio of carbon to oxygen," said Olivia Venot, KU Leuven, who developed an atmospheric chemical model of 55 Cancri e that supported the analysis of the observations. "If the presence of hydrogen cyanide and other molecules is confirmed in a few years time by the next generation of infrared telescopes, it would support the theory that this planet is indeed carbon rich and a very exotic place," concludes Jonathan Tennyson, UCL. "Although hydrogen cyanide, or prussic acid, is highly poisonous, so it is perhaps not a planet I would like to live on!"Source: http://www.futuretimeline.net/
Read More........

Earth Collects 5 to 300 Tons of Cosmic Dust a Day

Image credit: ESO/Y. Beletsky
Currently, estimates of the Earth's intake of space dust vary from around five tons to as much as 300 tons every day. A €2.5 million international project, led by Professor John Plane from the University's School of Chemistry, will seek to address this discrepancy. Scientists at the University of Leeds are looking to discover how dust particles in the solar system interact with the Earth's atmosphere. Currently, estimates of the Earth's intake of space dust vary from around five tons to as much as 300 tons every day. A € 2.5 million international project, led by ERC Advanced grantee John Plane from the University's School of Chemistry, will seek to address this discrepancy. The Cosmic Dust in the Terrestrial Atmosphere (CODITA) project will investigate what happens to the dust from its origin in the outer solar system all the way to the earth's surface. The work, funded by the European Research Council, will also explore whether cosmic dust has a role in the Earth's climate and how it interacts with the ozone layer in the stratosphere. "People tend to think space is completely empty, but if all the dust between the Sun and Jupiter was compressed it would create a moon 16 miles across. It's surprising that we aren't more certain how much of this comes to Earth" said Professor Plane. "If the dust input is around 300 tons per day, then the particles are being transported down through the atmosphere considerably faster than generally believed; if the 5-ton figure is correct, we will need to revise substantially our understanding of how dust evolves in the Solar System and is transported from the edge of space around 50 miles high to the surface," added Professor Plane. Over the next five years, the scientists at Leeds, and visiting
Zodiacal Light Seen from Paranal, Credit: ©ESO/Y.Beletsky
colleagues from Germany and the United States, will replicate in the laboratory the chemical processes that dust particles undergo as they enter and filter through the atmosphere."Our work in the lab will look at the nature of cosmic dust evaporation and the formation of meteoric smoke particles, which play a role in ice nucleation and the freezing of polar stratospheric clouds," said Professor Plane. In the atmosphere, the dust particles undergo very rapid heating through collisions with air molecules, reaching temperatures well in excess of 1600 degrees Celsius. At this point they melt and evaporate. The larger particles can be seen as "shooting stars", whilst the electrons produced from ionizing collisions with air enable smaller dust particles to be detected using specialist high-powered radar equipment. By replicating this heating in the lab, it is hoped that radar measurements of meteors can be better understood and used to make accurate measurements of the dust input. The metallic vapours recondense in the atmosphere to form nanometre-sized particles known as meteor smoke. In 2014, the team will be involved in a Norwegian rocket experiment to measure meteor smoke in ice particles in the upper atmosphere. "Cosmic dust and meteor smoke are both believed to interact with the clouds which play a key role in causing stratospheric ozone depletion - most notably the formation of the Antarctic Ozone Hole," said Professor Martyn Chipperfield, from the University's School of Earth and Environment. "We will use the lab data in a detailed chemistry-climate model of the whole atmosphere. This will make it possible, for the first time, to model the effects of cosmic dust consistently from the outer reaches of the Solar System all the way down to the Earth's surface," said Professor Chipperfield. "It has been suggested that to combat global warming sulphate aerosol could be released into the atmosphere to reflect some of the Sun's heat. Understanding the quantity of cosmic dust and the potential chemical reactions which may occur is crucial to moving this idea forward," said Professor Chipperfield. CODITA is funded by the European Research Council (ERC). The climate model which will be used in the project is supported at Leeds by the Natural Environment Research Council (NERC), and is a flagship model produced by the US National Center for Atmospheric Research (NCAR). Contacts and sources: University of Leeds, Cosmic Dust in the Terrestrial Atmosphere. Source: Article
Read More........