New Super Highway Network Duiscovered in the Solar System, Faster Travel Now Possible


Researchers have discovered a new superhighway network to travel through the Solar System much faster than was previously possible. Such routes can drive comets and asteroids near Jupiter to Neptune's distance in under a decade and to 100 astronomical units in less than a century. They could be used to send spacecraft to the far reaches of our planetary system relatively fast, and to monitor and understand near-Earth objects that might collide with our planet. 

In their paper, published in the Nov. 25 issue of Science Advances, the researchers observed the dynamical structure of these routes, forming a connected series of arches inside what’s known as space manifolds that extend from the asteroid belt to Uranus and beyond. This newly discovered "Å“celestial autobahn," or Å“celestial highway, acts over several decades, as opposed to the hundreds of thousands or millions of years that usually characterize Solar System dynamics.

The most conspicuous arch structures are linked to Jupiter and the strong gravitational forces it exerts. The population of Jupiter-family comets (comets having orbital periods of 20 years) as well as small-size solar system bodies known as Centaurs, are controlled by such manifolds on unprecedented time scales. Some of these bodies will end up colliding with Jupiter or being ejected from the Solar System.

The structures were resolved by gathering numerical data about millions of orbits in our Solar System and computing how these orbits fit within already-known space manifolds. The results need to be studied further, both to determine how they could be used by spacecraft, or how such manifolds behave in the vicinity of the Earth, controlling the asteroid and meteorite encounters, as well as the growing population of artificial man-made objects in the Earth-Moon system.

Contacts and sources: 
Ioana Patringenaru
University of California - San Diego
Read More........

Oceans in Outer Solar System on Pluto and Large Kuiper Belt Objects, Slowly Freezing Over Time


Credit of NASA, ESA, and A. Feild (STScI)
A new study suggests that Pluto and other large Kuiper belt objects started out with liquid oceans which have been slowly freezing over time.

The accretion of new material during Pluto’s formation may have generated enough heat to create a liquid ocean that has persisted beneath an icy crust to the present day, despite the dwarf planet’s orbit far from the sun in the cold outer reaches of the solar system.

This “hot start” scenario, presented in a paper published June 22 in Nature Geoscience, contrasts with the traditional view of Pluto’s origins as a ball of frozen ice and rock in which radioactive decay could have eventually generated enough heat to melt the ice and form a subsurface ocean.

“For a long time people have thought about the thermal evolution of Pluto and the ability of an ocean to survive to the present day,” said coauthor Francis Nimmo, professor of Earth and planetary sciences at UC Santa Cruz. “Now that we have images of Pluto’s surface from NASA’s New Horizons mission, we can compare what we see with the predictions of different thermal evolution models.”

Because water expands when it freezes and contracts when it melts, the hot-start and cold-start scenarios have different implications for the tectonics and resulting surface features of Pluto, explained first author and UCSC graduate student Carver Bierson.

“If it started cold and the ice melted internally, Pluto would have contracted and we should see compression features on its surface, whereas if it started hot it should have expanded as the ocean froze and we should see extension features on the surface,” Bierson said. “We see lots of evidence of expansion, but we don’t see any evidence of compression, so the observations are more consistent with Pluto starting with a liquid ocean.”

Extensional faults (arrows) on the surface of Pluto indicate expansion of the dwarf planet’s icy crust, attributed to freezing of a subsurface ocean.
Image credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute/Alex Parker

The thermal and tectonic evolution of a cold-start Pluto is actually a bit complicated, because after an initial period of gradual melting the subsurface ocean would begin to refreeze. So compression of the surface would occur early on, followed by more recent extension. With a hot start, extension would occur throughout Pluto’s history.

“The oldest surface features on Pluto are harder to figure out, but it looks like there was both ancient and modern extension of the surface,” Nimmo said.

The next question was whether enough energy was available to give Pluto a hot start. The two main energy sources would be heat released by the decay of radioactive elements in the rock and gravitational energy released as new material bombarded the surface of the growing protoplanet.

Bierson’s calculations showed that if all of the gravitational energy was retained as heat, it would inevitably create an initial liquid ocean. In practice, however, much of that energy would radiate away from the surface, especially if the accretion of new material occurred slowly.

“How Pluto was put together in the first place matters a lot for its thermal evolution,” Nimmo said. “If it builds up too slowly, the hot material at the surface radiates energy into space, but if it builds up fast enough the heat gets trapped inside.”

The researchers calculated that if Pluto formed over a period of less that 30,000 years, then it would have started out hot. If, instead, accretion took place over a few million years, a hot start would only be possible if large impactors buried their energy deep beneath the surface.

The new findings imply that other large Kuiper belt objects probably also started out hot and could have had early oceans. These oceans could persist to the present day in the largest objects, such as the dwarf planets Eris and Makemake.

“Even in this cold environment so far from the sun, all these worlds might have formed fast and hot, with liquid oceans,” Bierson said.

In addition to Bierson and Nimmo, the paper was coauthored by Alan Stern at the Southwest Research Institute, the principal investigator of the New Horizons mission.

Contacts and sources:
Tim Stephens
University of California - Santa Cruz

Publication: Evidence for a hot start and early ocean formation on Pluto Carver J. Bierson, Francis Nimmo & S. Alan Stern Nature Geoscience (2020https://www.nature.com/articles/s41561-020-0595-0 http://dx.doi.org/10.1038/s41561-020-0595-0  Source: https://www.ineffableisland.com
Read More........