Researchers in Europe have demonstrated that graphene can be successfully interfaced with neurons, while maintaining the integrity of these vital nerve cells. It is believed this could lead to greatly improved brain implants. A new study published in the journal ACS Nano demonstrates how it is possible to interface graphene with neurons, whilst maintaining the integrity of these vital nerve cells. The research was part of the EU's Graphene Flagship – a €1 billion project that aims to bring graphene from laboratories into commercial applications within 10 years. The study involved a collaboration between nanotechnologists, chemists, biophysicists and neurobiologists from the University of Trieste in Italy, the University Castilla-La Mancha in Spain and the Cambridge Graphene Centre in the UK. Prof. Laura Ballerini, lead neuroscientist in the study: "For the first time, we interfaced graphene to neurons directly, without any peptide coating used in the past to favour neuronal adhesion. We then tested the ability of neurons to generate electrical signals known to represent brain activities and found that the neurons retained unaltered their neuronal signalling properties. This is the first functional study of neuronal synaptic activity using uncoated, graphene-based materials." Using electron microscopy and immuno-fluorescence in rat brain cell cultures, the researchers observed that the neurons interfaced well with the untreated graphene electrodes – remaining healthy, transmitting normal electric impulses and, importantly, showing no adverse glial reaction which can lead to damaging scar tissue. This is therefore
the first step towards using pristine, graphene-based material for a neuro-interface. Graphene-based electrodes implanted in the brain could restore sensory functions for amputees or paralysed patients, or treat individuals with motor disorders such as epilepsy or Parkinson's disease. Further into the future, perhaps they could be used to enhance or upgrade the abilities of normal, healthy people too, bringing the age of transhumanism closer to reality. Too often, the modern electrodes used for neuro-interfaces (based on tungsten or silicon) suffer partial or complete loss of signal over time. This is often caused by scar tissue formation during the electrode insertion and by its rigid nature preventing the electrode from moving with the natural movements of the brain. Graphene, by contrast, appears to be a highly promising material to solve these problems. It has excellent conductivity, flexibility, biocompatibility and stability within the body. "Hopefully this will pave the way for better deep brain implants to both harness and control the brain, with higher sensitivity and fewer unwanted side effects," said Ballerini. "These initial results show how we are just at the tip of the iceberg when it comes to the potential of graphene and related materials in bio-applications and medicine," said Professor Andrea Ferrari, Director of the Cambridge Graphene Centre. "The expertise developed at the Cambridge Graphene Centre allows us to produce large quantities of pristine material in solution, and this study proves the compatibility of our process with neuro-interfaces."Graphene shown to safely interface with neurons in the brain