Supernova 'Mingus' could shed light on dark energy

Astronomers have spotted the most distant supernova ever seen. Nicknamed "Mingus", it was described at the 221st American Astronomical Society meeting in the US. These lightshows of dying stars have been seen since ancient times, but modern astronomers use details of their light to probe the Universe's secrets. Ten billion light-years distant, Mingus will help shed light on so-called dark energy, the force that appears to be speeding up cosmic expansion. Formally called SN SCP-0401, the supernova was something of a chance find in a survey carried out in part by the Supernova Cosmology Project (SCP) using the Hubble space telescope, first undertaken in 2004. But the data were simply not good enough to pin down what was seen. As David Rubin of the University of California, Berkeley, lead author on the study, told the AAS meeting, "for a sense of brightness, this supernova is about as bright as a firefly viewed from 3,000 miles away". Further news had to wait until astronauts installed the Wide Field Camera 3 on the Hubble telescope in 2009 and again trained it on the candidate, which had - in an SCP tradition of naming supernovae after composers - already been named after jazz musician Charles Mingus. 'Bit of history': What interests astronomers trying to find ever more distant Type 1a supernovae - distant both in space and in time - is the chance to compare them to better-known, more local supernovae. "We were able to watch these changes in brightness and spectral features for an event that lasted just a few weeks almost 10 billion years ago," said Saul Perlmutter, who leads the Supernova Cosmology Project. Prof Perlmutter shared the 2011 Nobel prize in physics for work with Type 1a supernovae that proved our Universe is speeding up in its expansion. Elucidating the mysterious force, "dark energy", which has been invoked as the cause of the expansion, will require careful study of supernovae all the way back to the epoch of the earliest stars. "We're seeing two-thirds of the way back to the beginning of the Universe, and we're getting a little bit of history where the physics of what makes a supernova explode have to all work out the same way there as they do near here," he told the meeting. Source: SAM Daily Times