IBM developing world's smallest computer

Credit: IBM Research
Most people are familiar with Moore's Law, but few have heard of Bell's Law – a related phenomenon coined by U.S. engineer Gordon Bell. This describes how a new class of computing devices tends to emerge about every decade or so, each 100 times smaller than the last. The shrinking volume of machines becomes obvious when you look back at the history of technology.

The 1960s, for example, were characterised by large mainframes that often filled entire rooms. The 1970s saw the adoption of "minicomputers" that were cheaper and smaller. Personal computing emerged in the early 1980s and laptops became popular in the 1990s. This was followed by mobile phones from the 2000s onwards, which themselves became ever thinner and more compact with each passing year, along with tablets and e-readers. More recently there has been rapid growth in wireless sensor networks that is giving birth to the Internet of Things (IoT).

The new computer announced by IBM is just 1mm x 1mm across, making it the smallest machine of its kind to ever be developed. It will feature as many as a million transistors, a solar cell and communications module. The company predicts these devices will be in widespread use within five years, embedded in all manner of everyday objects. So-called "cryptographic anchors" and blockchain technology will ensure a product's authenticity – from its point of origin to the hands of the customer. These high-tech, miniature watermarks will (for example) verify that products have originated from the factory the distributor claims they are from, and are not counterfeits mixed in with genuine items.

In some countries, nearly 70 percent of certain life-saving pharmaceuticals are counterfeit and the overall cost of fraud to the global economy is more than $600bn every year. This new generation of tiny computers will monitor, analyse, communicate and even act on data.

"These [crypto-anchor] technologies pave the way for new solutions that tackle food safety, authenticity of manufactured components, genetically modified products, identification of counterfeit objects and provenance of luxury goods," says IBM research chief, Arvind Krishna.

Looking further into the future – if Bell's Law continues – devices are likely to be small enough to fit inside blood cells within a few decades. The potential applications then will become like science fiction: could we see a merger between humans and machines?

Source: https://www.futuretimeline.net/
Read More........

Smallest Transistor Ever. 1-Nanometer Carbon Nanotube Gate

This is a schematic of a transistor with a molybdenum disulfide channel and 1-nanometer carbon nanotube gate., Credit: Sujay Desai/Berkeley Lab
Berkeley Lab-led research has broken a major barrier in transistor size by creating gate only 1 nanometer long. 

For more than a decade, engineers have been eyeing the finish line in the race to shrink the size of components in integrated circuits. They knew that the laws of physics had set a 5-nanometer threshold on the size of transistor gates among conventional semiconductors, about one-quarter the size of high-end 20-nanometer-gate transistors now on the market. 

Some laws are made to be broken, or at least challenged.

A research team led by faculty scientist Ali Javey at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has done just that by creating a transistor with a working 1-nanometer gate. For comparison, a strand of human hair is about 50,000 nanometers thick.

"We made the smallest transistor reported to date," said Javey, a lead principal investigator of the Electronic Materials program in Berkeley Lab's Materials Science Division. "The gate length is considered a defining dimension of the transistor. We demonstrated a 1-nanometer-gate transistor, showing that with the choice of proper materials, there is a lot more room to shrink our electronics."

The key was to use carbon nanotubes and molybdenum disulfide (MoS2), an engine lubricant commonly sold in auto parts shops. MoS2 is part of a family of materials with immense potential for applications in LEDs, lasers, nanoscale transistors, solar cells, and more.

The findings will appear in the Oct. 7 issue of the journal Science. Other investigators on this paper include Jeff Bokor, a faculty senior scientist at Berkeley Lab and a professor at UC Berkeley; Chenming Hu, a professor at UC Berkeley; Moon Kim, a professor at the University of Texas at Dallas; and H.S. Philip Wong, a professor at Stanford University.

The development could be key to keeping alive Intel co-founder Gordon Moore's prediction that the density of transistors on integrated circuits would double every two years, enabling the increased performance of our laptops, mobile phones, televisions, and other electronics.

"The semiconductor industry has long assumed that any gate below 5 nanometers wouldn't work, so anything below that was not even considered," said study lead author Sujay Desai, a graduate student in Javey's lab. "This research shows that sub-5-nanometer gates should not be discounted. Industry has been squeezing every last bit of capability out of silicon. By changing the material from silicon to MoS2, we can make a transistor with a gate that is just 1 nanometer in length, and operate it like a switch."

When 'electrons are out of control'

Transistors consist of three terminals: a source, a drain, and a gate. Current flows from the source to the drain, and that flow is controlled by the gate, which switches on and off in response to the voltage applied.

Both silicon and MoS2 have a crystalline lattice structure, but electrons flowing through silicon are lighter and encounter less resistance compared with MoS2. That is a boon when the gate is 5 nanometers or longer. But below that length, a quantum mechanical phenomenon called tunneling kicks in, and the gate barrier is no longer able to keep the electrons from barging through from the source to the drain terminals.

Transmission electron microscope image of a cross section of the transistor. It shows the 1-nanometer carbon nanotube gate and the molybdenum disulfide semiconductor separated by zirconium dioxide, an insulator. 
Credit: Qingxiao Wang/UT Dallas
"This means we can't turn off the transistors," said Desai. "The electrons are out of control."

Because electrons flowing through MoS2 are heavier, their flow can be controlled with smaller gate lengths. MoS2 can also be scaled down to atomically thin sheets, about 0.65 nanometers thick, with a lower dielectric constant, a measure reflecting the ability of a material to store energy in an electric field. Both of these properties, in addition to the mass of the electron, help improve the control of the flow of current inside the transistor when the gate length is reduced to 1 nanometer.

Once they settled on MoS2 as the semiconductor material, it was time to construct the gate. Making a 1-nanometer structure, it turns out, is no small feat. Conventional lithography techniques don't work well at that scale, so the researchers turned to carbon nanotubes, hollow cylindrical tubes with diameters as small as 1 nanometer.

They then measured the electrical properties of the devices to show that the MoS2 transistor with the carbon nanotube gate effectively controlled the flow of electrons.

"This work demonstrated the shortest transistor ever," said Javey, who is also a UC Berkeley professor of electrical engineering and computer sciences. "However, it's a proof of concept. We have not yet packed these transistors onto a chip, and we haven't done this billions of times over. We also have not developed self-aligned fabrication schemes for reducing parasitic resistances in the device. But this work is important to show that we are no longer limited to a 5-nanometer gate for our transistors. Moore's Law can continue a while longer by proper engineering of the semiconductor material and device architecture."

The work at Berkeley Lab was primarily funded by the Department of Energy's Basic Energy Sciences program.


Read More........

Gravitational waves detected for the first time

Credits: R. Hurt/Caltech-JPL
In a historical scientific landmark, researchers have announced the first detection of gravitational waves, as predicted by Einstein's general theory of relativity 100 years ago. This major discovery opens a new era of astronomy.
For the first time, scientists have directly observed "ripples" in the fabric of spacetime called gravitational waves, arriving at the Earth from a cataclysmic event in the distant universe. This confirms a major prediction of Einstein’s 1915 general theory of relativity and opens an unprecedented new window onto the cosmos. The observation was made at 09:50:45 GMT on 14th September 2015, when two black holes collided. However, given the enormous distance involved and the time required for light to reach us, this event actually occurred some 1.3 billion years ago, during the mid-Proterozoic Eon. For context, this is so far back that multicellular life here on Earth was only just beginning to spread. The signal came from the Southern Celestial Hemisphere, in the rough direction of (but much further away than) the Magellanic Clouds. The two black holes were spinning together as a binary pair, turning around each other several tens of times a second, until they eventually collided at half the speed of light. These objects were 36 and 29 times the mass of our Sun. As their event horizons merged, they became one – like two soap bubbles in a bath. During the fraction of a second that this happened, three solar masses were converted to gravitational waves, and for a brief instant the event hit a peak power output 50 times
The gravitational waves were detected by both of the twin Laser Interferometer Gravitational-wave Observatory (LIGO) detectors, located in Livingston, Louisiana, and Hanford, Washington, USA. The LIGO Observatories are funded by the National Science Foundation (NSF), and were conceived, built, and are operated by Caltech and MIT. The discovery was published yesterday in the journal Physical Review Letters.
that of the entire visible universe. Prof. Stephen Hawking told BBC News: "Gravitational waves provide a completely new way of looking at the Universe. The ability to detect them has the potential to revolutionise astronomy. This discovery is the first detection of a black hole binary system and the first observation of black holes merging. Apart from testing General Relativity, we could hope to see black holes through the history of the Universe. We may even see relics of the very early Universe during the Big Bang at some of the most extreme energies possible." "There is a Nobel Prize in it – there is no doubt," said Prof. Karsten Danzmann, from the Max Planck Institute for Gravitational Physics and Leibniz University in Hannover, Germany, who collaborated on the study. In an interview with the BBC, he claimed the significance of this discovery is on a par with the determination of the structure of DNA. "It is the first ever direct detection of gravitational waves; it's the first ever direct detection of black holes and it is a confirmation of General Relativity because the property of these black holes agrees exactly with what Einstein predicted almost exactly 100 years ago." "We found a beautiful signature of the merger of two black holes and it agrees exactly – fantastically – with the numerical solutions to Einstein equations ...

LIGO measurement of gravitational waves at the Hanford (left) and Livingston (right) detectors, compared to the theoretical predicted values.By Abbott et al. [CC BY 3.0]
it looked too beautiful to be true." "Scientists have been looking for gravitational waves for decades – but we’ve only now been able to achieve the incredibly precise technologies needed to pick up these very, very faint echoes from across the universe," said Danzmann. "This discovery would not have been possible without the efforts and the technologies developed by the Max Planck, Leibniz Universität, and UK scientists working in the GEO collaboration." Researchers at the LIGO Observatories were able to measure tiny and subtle disturbances the waves made to space and time as they passed through the Earth, with machines detecting changes just fractions of the width of an atom. At each observatory, the two-and-a-half-mile (4-km) long L-shaped LIGO interferometer uses laser light split into two beams that travel back and forth along tubes kept at a near-perfect vacuum. The beams are used to monitor the distance between mirrors precisely positioned at the ends of the arms. According to Einstein’s theory, the distance between the mirrors will change by an infinitesimal amount when gravitational waves pass by the detector. A change in the lengths of the arms smaller than one-ten-thousandth the diameter of a proton can be detected; equivalent to a human hair's diameter over three light years from Earth. "The Advanced LIGO detectors are a tour de force of science and technology, made possible by a truly exceptional international team of technicians, engineers, and scientists," says David Shoemaker of MIT. "We are very proud that we finished this NSF-funded project on time and on budget." "We spent years modelling the gravitational-wave emission from one of the most extreme events in the universe: pairs of massive black holes orbiting with each other and then merging. And that’s exactly the kind of signal we detected!" says Prof. Alessandra Buonanno, director at the Max Planck Institute for Gravitational Physics in Potsdam. "With this discovery, we humans are embarking on a marvellous new quest: the quest to explore the warped side of the universe – objects and phenomena that are made from warped spacetime," says Kip Thorne, Feynman Professor of Theoretical Physics at Caltech. "Colliding black holes and gravitational waves are our first beautiful examples." Advanced LIGO is among the most sensitive instruments ever built. During its next observing stage, it is expected to detect five more black hole mergers and to detect around 40 binary star mergers each year, in addition to an unknown number of more exotic gravitational wave sources, some of which may not be anticipated by current theory. Source: Futurtimeline.net
Read More........

Driverless cars see fewer crashes than human-driven cars

Google self-driving car in Mountain View
domain-b: Self-driving cars are involved in fewer crashes on average than vehicles with a driver behind the wheel, a study released on Friday by the Virginia TechTransportation Institute shows. The study was commissioned by Alphabet Inc's Google unit, which has reported a series of minor crashes involving its self-driving fleet. It looked only at Google's fleet of more than 50 self-driving cars, which has logged 1.3 million miles in Texas and California in self-driving mode. The test fleet has reported 17 crashes over the last six years, although none were the fault of the self-driving cars, Google said. After adjusting for severity and accounting for crashes not reported to police, the study estimated cars with drivers behind the wheel are involved in 4.2 crashes per million miles, versus 3.2 crashes per million miles for self-driving cars in autonomous mode. Crash rates for conventional vehicles at all severity levels were higher
than self-driving crash rates, the study found. A 2015 National Highway Traffic Safety Administration study found about 60 percent of property-damage-only crashes and 24 percent of all injury crashes are not reported to the police. California law requires all crashes involving self-driving vehicles be reported to police. Google spokesman Johnny Luu said the company asked Virginia Tech "to look into the topic given the interest and develop a robust methodology to be able to make meaningful comparison between regular cars on the road as well as our self-driving cars". Luu said the study "will be helpful making apples-to-apples comparisons moving forward". A study released in October by the University of Michigan Transportation Research Institute compared crash rates among Google, Delphi and Audi self-driving cars in 2013 and found they had a higher rate than for conventional cars. But that study noted the low volume of driver-less miles -- 1.2 million compared with 3 trillion miles driven annually on US roads. In December, California proposed state regulations that would require all autonomous cars to have a steering wheel, throttle and brake pedals when operating on California's public roads. A licensed driver would need to be in the driver's seat ready to take over in the event something went wrong. Google, eager to demonstrate its vehicles are safe, criticized the proposed rule, which it said would maintain "the same old status quo and falls short on allowing this technology to reach its full potential, while excluding those who need to get around but cannot drive". Source: domain-b.comImage: @flickr.com/photos/markdoliner/7694478124
Read More........

World's first virtual reality rollercoaster

In a groundbreaking move that could revolutionise the world of theme parks, the UK's Alton Towers Resort announces today it is launching a rollercoaster entirely dedicated to virtual reality.  Set to open in April, Galactica is the world's first rollercoaster entirely customised for the full virtual reality experience, transforming riders into astronauts and plunging them into outer space with a G force of 3.5, which is more powerful than the 3G of a real rocket launch. The exhilarating new ride will combine the physical exertion and adrenaline rush of Alton Towers' iconic flying rollercoaster, with the breathtaking sensation of travelling through space. Cutting edge technology launches riders into a different world, complete with virtual space suits, stunning visuals and an exciting adventure. The visuals have been perfectly synchronised to the thrilling twists, turns and loops of the rollercoaster to recreate the sensation
of hurtling through space. Visitors will ride in a prone position along the 840-metre long (2,760 ft) track, to recreate the feeling of flying. Galactica's epic space theme is set to be hugely popular following  Tim Peake's maiden voyage into space in December 2015. Stunning, high-quality visuals deliver an immersive experience that its designers claim is breathtakingly realistic. Each rider wears a modified Samsung Gear VR headset. Through this, an on-board artificial intelligence guides them from the launch pad up into space – flying and looping beyond the stars, banking through wormholes and speeding across distant galaxies, revealing the wonders of the cosmos in stunning clarity. Commenting on the new attraction, Marketing Director Gill Riley says: "Galactica uses groundbreaking technology to give riders a
breathtaking and completely unique rollercoaster experience. Tim Peake captured the imagination of millions of Brits last year when he set off on his  mission to the International Space Station – and now our visitors can become astronauts too. "There is nowhere else in the world that people can experience the feeling of a flying rollercoaster combined with soaring through the universe. For two minutes, our guests will be transported into space and we believe Galactica showcases the future for theme parks around the world – it's a complete game changer!"World's first virtual reality rollercoaster
Read More........