Xiaomi 80W wireless charging technology goes official

Chinese technology company Xiaomi has announced its next salvo in the fast charging wars, a new 80W wireless method that the company claims beats out any other competitor. The 80W solution is said to be able to charge a 4,000mAh battery up to 50 percent full in eight minutes and 100 percent full in 19 minutes. The video above shows it in action on a modified Mi 10 Pro.

Xiaomi already has the fastest wireless charging on a shipping phone; the Mi 10 Ultra has 50W wireless technology that can fully charge its 4,500mAh battery in 40 minutes. Oppo recently announced a 65W solution that is said to be able to charge a 4,000mAh battery in 30 minutes, but the tech is yet to ship in a commercial device.

Fast wireless charging is much less common outside China, where companies like Huawei and Xiaomi have been working to outdo each other for a while. The fastest option that’s widely available in the West is the OnePlus 8 Pro, which has an optional 30W wireless charger. Apple’s new MagSafe chargers for the iPhone 12 line charge at up to 15W.Xiaomi hasn’t announced when a phone with 80W wireless charging will actually ship, but it shouldn’t be too far off. The company has consistently released phones with ever-higher wireless power specs over the past couple of years, with the Mi 10 Ultra only coming out a couple of months ago. Source: https://www.daily-bangladesh.com
Read More........

Indian origin engineer develops technology for simultaneous Wifi transmission and reception


Harish Krishnaswamy, associate professor of electrical engineering, Columbia University 
A team of Columbia University researchers believes that enabling reliable and efficient full duplex wireless communication is a task best addressed at the chip level. The researchers, led by Harish Krishnaswamy, an associate professor of electrical engineering, have developed full-duplex radio integrated circuits that can be implemented in nanoscale CMOS to enable simultaneous transmission and reception on the same frequency. "Having a transmitter and receiver use the same frequency offers the potential to immediately double network data capacity," Krishnaswamy says. "Our work is the first to demonstrate an IC that can receive and transmit simultaneously," he says. CMOS is the dominant technology used for radio ICs inside phones and other radio-equipped mobile devices. The biggest challenge the team faced during its research was canceling transmitter echo, a phenomenon that makes usable full duplex impossible. "What you really need to do is to cancel-out that echo to the point where it's eliminated almost perfectly and the residual echo is extremely small - smaller than the received signal, the desired signal - that you're trying to receive from the distant cell tower," he says. Since the echo is over a billion times more powerful than the received signal, echo cancellation circuits must operate highly precisely. "We need echo cancellation circuits that are something like one-part-per-billion-level accurate," Krishnaswamy explains. Such precision is difficult to achieve in software alone without killing overall device performance. "This really is something that needs to be done in hardware," Krishnaswamy says. "That level of precision in the echo cancellation, and the need to handle such a loud echo, cannot be done purely in signal processing." To achieve optimal quality, the researchers applied multiple layers of echo cancellation to their software. "The echo is at least a billion to 10 billion times more powerful than the signal that we're trying Columbia to receive, so basically you want to cancel that factor, and that's hard to do with one signal echo canceller," Krishnaswamy says. "So the way these full duplex systems are likely to be successful is to have multiple layers of echo cancellation, just hitting that echo canceling again, and again, and again. Krishnaswamy and doctoral student Jin Zhou are now testing the full-duplex technology on various nodes to understand exactly what gains might be possible at the network level. "We are looking forward to being able to deliver the promised performance improvements," Krishnaswamy says. Source domain-b.com
Read More........

High-Efficiency Power Amplifier Could Bring 5G Cell Phones around 2019

Credit: Purdue University
A new highly efficient power amplifier for electronics could help make possible next-generation cell phones, low-cost collision-avoidance radar for cars and lightweight microsatellites for communications. Fifth-generation, or 5G, mobile devices expected around 2019 will require improved power amplifiers operating at very high frequencies. The new phones will be designed to download and transmit data and videos faster than today's phones, provide better coverage, consume less power and meet the needs of an emerging "Internet of things" in which everyday objects have network connectivity, allowing them to send and receive data. This diagram shows the standard layout of transistors in cell phone power amplifiers, at left, and a new highly efficient amplifier design, at right. The new design could help make possible next-generation cell phones, low-cost collision-avoidance radar for cars and lightweight microsatellites for communications. Power amplifiers are needed to transmit signals. Because today's cell phone amplifiers are made of gallium arsenide, they cannot be integrated into the phone's silicon-based technology, called complementary metal-oxide-semiconductor (CMOS). The new amplifier design is CMOS-based, meaning it could allow researchers to integrate the power amplifier with the phone's electronic chip, reducing manufacturing costs and power consumption while boosting performance. "Silicon is much less expensive than gallium arsenide, more reliable and has a longer lifespan, and if you have everything on one chip it's also easier to test and maintain," said Saeed Mohammadi, an associate professor of electrical and computer engineering at Purdue University. "We have developed the highest efficiency CMOS power amplifier in the frequency range needed for 5G cell phones and next-generation radars." Findings are detailed in two papers, one to be presented during the IEEE International Microwave Symposium on May 24 in San Francisco, authored by former doctoral student Sultan R. Helmi, who has graduated, and Mohammadi. They authored another paper with former doctoral student Jing-Hwa Chen to appear in a future issue of the journal IEEE Transactions on Microwave Theory and Techniques. The amplifier achieves an efficiency of 40 percent, which is comparable to amplifiers made of gallium arsenide. The researchers created the new type of amplifier using a high-performance type of CMOS technology called silicon on insulator (SOI). The new amplifier design has several silicon transistors stacked together and reduces the number of metal interconnections normally needed between transistors, reducing "parasitic capacitance," which hinders performance and can lead to damage to electronic circuits. "We have merged transistors so we are using less metallization around the device, and that way we have reduced the capacitance and can achieve higher efficiencies," Mohammadi said. "We are trying to eliminate metallization between transistors." The new amplifiers could bring low-cost collision-avoidance radars for cars and electronics for lightweight communications microsatellites. The CMOS amplifiers could allow researchers to design microsatellites that are one-hundredth the weight of today's technology. Three U.S. patents related to the amplifier have been issued. The research was funded partially by the U.S. Defense Advanced Research Projects Agency. The researchers are working on a new version of the amplifier that is twice as powerful. Further work will be needed to integrate the amplifier into a cell phone chip. 
  • Contacts and sources:
  • Writer: Emil Venere
  • Purdue University
Read More........

Indian-origin engineer develops technology to double Wi-Fi speed


New York: An Indian-origin engineer has developed a novel technology that doubles Wi-Fi speeds with a single antenna -- an achievement with potential to transform the telecommunications field in future. Columbia University's Harish Krishnaswamy, an electrical engineering graduate from the Indian Institute of Technology -Madras, has for the first time integrated a non-reciprocal circulator and a full-duplex radio on a nanoscale silicon chip to create the breakthrough system. "This technology could revolutionise the field of telecommunications," said Krishnaswamy, director of the Columbia High-Speed and Mm-wave IC (CoSMIC) Lab. "Our circulator is the first to be put on a silicon chip, and we get literally orders of magnitude better performance than prior work," he noted. Last year, Columbia researchers invented a technology -- full-duplex radio integrated circuits (ICs) -- that can be implemented in nanoscale CMOS to enable simultaneous transmission and reception at the same frequency in a wireless radio. That system
required two antennas. "Full-duplex  communications, where the transmitter and the receiver operate at the same time and at the same frequency, has become a critical research area and now we've shown that WiFi capacity can be doubled on a nanoscale silicon chip with a single antenna. This has enormous implications for devices like smartphones and tablets," Krishnaswamy explained. "Being able to put the circulator on the same chip as the rest of the radio has the potential to significantly reduce the size of the system, enhance its performance, and introduce new functionalities critical to full duplex," added co-researcher Jin Zhou. Krishnaswamy's team had to "break" Lorentz Reciprocity - a fundamental physical characteristic of most electronic structures that requires electromagnetic waves travel in the same manner in forward and reverse directions - to develop the technology. "It is rare for a single piece of research, or even a research group, to bridge fundamental theoretical contributions with implementations of practical relevance. It is extremely rewarding to supervise graduate students who were able to do that," said the Indian-origin engineer who has earlier won many accolades for his research efforts. The research was published in the journal Nature Communications and the paper was presented at the "2016 IEEE International Solid-State Circuits Conference" in San Francisco, California, recently. Source:  ummid.com
Read More........

Researcher Gains Control Of Another Man's Brain Over The Internet

Human To Human Brain Interface Allows Researcher To Control Another Person Hand Motions Over The Internet, Credit: University of Washington
University of Washington researchers have performed what they believe is the first noninvasive human-to-human brain interface, with one researcher able to send a brain signal via the Internet to control the hand motions of a fellow researcher. University of Washington researcher Rajesh Rao, left, plays a computer game with his mind. Across campus, researcher Andrea Stocco, right, wears a magnetic stimulation coil over the left motor cortex region of his brain. Stocco’s right index finger moved involuntarily to hit the “fire” button as part of the first human brain-to-brain interface demonstration. Using electrical brain recordings and a form of magnetic stimulation, Rajesh Rao sent a brain signal to Andrea Stocco on the other side of the UW campus, causing Stocco’s finger to move on a keyboard. While researchers at Duke University have demonstrated brain-to-brain communication between two rats, and Harvard researchers have demonstrated it between a human and a rat, Rao and Stocco believe this is the first demonstration of human-to-human brain interfacing. “The Internet was a way to connect computers, and now it can be a way to connect brains,” Stocco said. “We want to take the knowledge of a brain and transmit it directly from brain to brain.” The researchers captured the full demonstration on video recorded in both labs. The following version has been edited for length. Rao, a UW
professor of computer science and engineering, has been working on brain-computer interfacing in his lab for more than 10 years and just published a textbook on the subject. In 2011, spurred by the rapid advances in technology, he believed he could demonstrate the concept of human brain-to-brain interfacing. So he partnered with Stocco, a UW research assistant professor in psychology at the UW’s Institute for Learning & Brain Sciences. On Aug. 12, Rao sat in his lab wearing a cap with electrodes hooked up to anelectroencephalographymachine, which reads electrical activity in the brain. Stocco was in his lab across campus wearing a purple swim cap marked with the stimulation site for the transcranial magnetic stimulation coil that was placed directly over his left motor cortex, which controls hand movement. The team had a Skype connection set up so the two labs could coordinate, though neither Rao nor Stocco could see the Skype screens. Rao looked at a computer screen and played a simple video game with his mind. When he was supposed to fire a cannon at a target, he imagined moving his right hand (being careful not to actually move his hand), causing a cursor to hit the “fire” button. Almost instantaneously, Stocco, who wore noise-canceling earbuds and wasn’t looking at a computer screen, involuntarily moved his right index finger to push the space bar on the keyboard in front of him, as if firing the cannon. Stocco compared the feeling of his hand moving involuntarily to that of a nervous tic. “It was both exciting and eerie to watch an imagined action from my brain get translated into actual action by another brain,” Rao said. “This was basically a one-way flow of information from my brain to his. The next step is having a more equitable two-way conversation directly between the two brains.” The cycle of the experiment. Brain signals from the “Sender” are recorded. When the computer detects imagined hand movements, a “fire” command is transmitted over the Internet to the TMS machine, which causes an upward movement of the right hand of the “Receiver.” This usually results in the “fire” key being hit.
Credit: University of Washington
The technologies used by the researchers for recording and stimulating the brain are both well-known. Electroencephalography, or EEG, is routinely used by clinicians and researchers to record brain activity noninvasively from the scalp. Transcranial magnetic stimulation is a noninvasive way of delivering stimulation to the brain to elicit a response. Its effect depends on where the coil is placed; in this case, it was placed directly over the brain region that controls a person’s right hand. By activating these neurons, the stimulation convinced the brain that it needed to move the right hand. Computer science and engineering undergraduates Matthew Bryan, Bryan Djunaedi, Joseph Wu and Alex Dadgar, along with bioengineering graduate student Dev Sarma, wrote the computer code for the project, translating Rao’s brain signals into a command for Stocco’s brain. “Brain-computer interface is something people have been talking about for a long, long time,” saidChantel Prat, assistant professor in psychology at the UW’s Institute for Learning & Brain Sciences, and Stocco’s wife and research partner who helped conduct the experiment. “We plugged a brain into the most complex computer anyone has ever studied, and that is another brain.” At first blush, this breakthrough brings to mind all kinds of science fiction scenarios. Stocco jokingly referred to it as a “Vulcan mind meld.” But Rao cautioned this technology only reads certain kinds of simple brain signals, not a person’s thoughts. And it doesn’t give anyone the ability to control your actions against your will. Both researchers were in the lab wearing highly specialized equipment and under ideal conditions. They also had to obtain and follow a stringent set of international human-subject testing rules to conduct the demonstration. “I think some people will be unnerved by this because they will overestimate the technology,” Prat said. “There’s no possible way the technology that we have could be used on a person unknowingly or without their willing participation.” Stocco said years from now the technology could be used, for example, by someone on the ground to help a flight attendant or passenger land an airplane if the pilot becomes incapacitated. Or a person with disabilities could communicate his or her wish, say, for food or water. The brain signals from one person to another would work even if they didn’t speak the same language. Rao and Stocco next plan to conduct an experiment that would transmit more complex information from one brain to the other. If that works, they then will conduct the experiment on a larger pool of subjects. Their research was funded in part by the National Science Foundation’s Engineering Research Center for Sensorimotor Neural Engineering at the UW, the U.S. Army Research Office and the National Institutes ofHealth. Contacts and sources:Doree ArmstrongSource: Article
Read More........