Probabilities Base For Patents Declaration

Probabilities base mass combination data collectives come out of mass web media designs Link: https://www.thedailyprotein.info/p/subscribe_11.html, Can be as web design as whole or else color, Font, Contents etc. as single part patent out of whole webdesign as patent, in this kind of doing we can taken an idea to create patents as whole design as whole and create mass of the web media design by creating similar probabilities variation in up, down side or as well can select single feature of site like color and create mass of the patents in up or down ratio all such mass of the patents can be utilized at several front. and these idea is a universal idea as innovation only belongs to us. base of similar patent designs in any filed of doings. Declaration By Ashish Bordia, Image Pixabay License, Free to use under the Pixabay license, No attribution required
Read More........

Robust and Non-Invasive Way To Tap, Address and Analyze Brain Activity That Is Optimized For Future Brain-Machine Interaction

New York University (New York, NY) and Massachusetts Institute of Technology (Cambridge, MA) scientists in U.S. Patent Application 20100106259 disclose conducting polymer nanowires and methods for their use in a brain-machine interface which is secure, robust and minimally invasive.  A vascular-based brain-machine interface comprising conducting polymer nanowires is disclosed by a inventors, Rodolfo R Llinas (New York, NY), Ian W. Hunter; (Cambridge, MA) and Bryan P. Ruddy (Somerville, MA). The brain-machine interface is based on a nanotechnology/vascular approach which they have developed. The interface has the advantage of being retrievable in that the nano-scale conducting polymer electrodes are small enough so that even with a large number of electrodes (millions), the interface can be removed without violating the integrity of the brain. The system for receiving electrical signals from a biological target using vascular-based probes, includes: a plurality of conducting polymer nanowires, each nanowire having a distal end and a proximal end, and an associated probe portion located at the distal end of each nanowire; the plurality of conducting polymer nanowires being delivered into a vascular territory to be monitored; and an electronic interface circuit in electrical communication with the plurality of conducting polymer nanowires, said electronic interface circuit comprising an interface module for interfacing the conducting polymer nanowires with a microwire located in the vicinity of the proximal ends of the conducting polymer nanowires. When considering the role of neuroscience in modern society, the issue of a brain-machine interface (e.g., between a human brain and a computer) is one of the central problems to be addressed. Indeed, the ability to design and build new information analysis and storage systems that are light enough to be easily carried, has advanced exponentially in the last few years. Ultimately, the brain-machine interface will likely become the major stumbling block to robust and rapid communication with such systems. To date, developments towards a brain-machine interface have not been as impressive as the progress in miniaturization or computational power expansion. Indeed, the limiting factor with most modern devices relates to the human interface. For instance, buttons must be large enough to manipulate and displays large enough to allow symbol recognition. Clearly, establishing a more direct relationship between the brain and such devices is desirable and will likely become increasingly important. As the need for a more direct relationship between the brain and machines becomes increasingly important, a revolution is taking place in the field of nanotechnology (n-technology). Nanotechnology deals with manufactured objects with characteristic dimensions of less than one micrometer. It is the inventors' belief that the brain-machine bottleneck will ultimately be resolved through the application of nanotechnology. The use of nanoscale electrode probes coupled with nanoscale electronics seems promising in this regard. To date, the finest electrodes have been pulled from glass. These microelectrodes have tips less than a micron in diameter and are filled with a conductive solution. They are typically used for intracellular recordings from nerve and muscle cells. A limitation is that activity is recorded from only one cell at a time. It has been possible, however, to obtain recordings from over 100 individual cells using multi-electrode arrays. Nonetheless, this is an invasive procedure as the electrodes are lowered into the brain from the surface of the skull. The fact that the nervous system parenchyma is permeated by a rich vascular bed makes this space a very attractive area for a brain-machine interface. Gas exchange and nutrient delivery to the brain mass occur in the brain across 25,000 meters of capillaries having diameters of approximately 10 microns. Moving towards the heart, the vessels increase rapidly in diameter with a final diameter of over 20 millimeters. The NYU/MIT brain interface employs conducting polymers which may be synthesized through electrochemical deposition onto a conductive electrode and manufactured into conducting polymer nanowires and microwires. The conducting polymer nanowire technology coupled with nanotechnology electronics record activity and/or stimulate the nervous system, e.g., brain or spinal cord through the vascular system. The present invention allows the nervous system to be addressed by a large number of isolated conducting polymer nano-probes that are delivered to the brain via the vascular bed through catheter technology used extensively in medicine and particularly in interventional neuroradiology. In accordance with the NYU/MIT brain interface includes a recording device comprised of a set of conducting polymer nanowires (n-wires) tethered to electronics in a catheter such that they may spread in a "bouquet" arrangement into a particular portion of the brain's vascular system. Such an arrangement can support a very large number of probes (e.g., several million). Each conducting polymer nanowire is used to record the electrical activity of a single neuron, or small group of neurons, without invading the brain parenchyma. An advantage of such a conducting polymer conducting polymer nanowire array is that its small size does not interfere with blood flow, gas or nutrient exchange and it does not disrupt brain activity. The techniques of the NYU/MIT brain interface are also applicable to the diagnosis and treatment of abnormal brain function. Such technology allows constant monitoring and functional imaging as well as direct modulation of brain activity. For instance, an advanced variation of conventional deep brain stimulation can be implemented in accordance with the present invention by introducing a conducting polymer nanowire or bouquet of nanowires to the area of the brain to be stimulated and selectively directing a current to the area by selectively deflecting the wires and creating longitudinal conductivity. With the NYU/MIT brain interface, intravascular neuronal recordings can be amplified, processed, and used to control computer interfaces or artificial prostheses. In controlling computational devices, neuronal activity becomes the user input, very much like the manipulation of devices such as keyboards and mice is today. Such input signals could also be used to control the movement of natural limbs that have been separated from their nerve supply through spinal cord or other injury. Thus while direct interface with "intelligent" devices can significantly improve the quality of life for normal individuals, it can also impact disabled individuals, allowing them to be more fully involved in everyday activities. Obtaining minimally invasive recordings from the brain can also be a useful diagnostic tool in neurology and psychiatry. It provides a functional image of activity deep within the brain that could be localized with precision when combined with MRI. The arrangement of intravascular conducting polymer nano-electrodes in accordance with the present invention can also be used for localized deep brain stimulation without the current need for opening the skull. One advantage of using intravascular conducting polymer nano-electrodes for therapeutic stimulation is that the position of the stimulating electrodes can be easily adjusted. Such adjustment is difficult with the implanted stimulating electrodes used today. FIG. 2A is an electron micrograph of a conducting polymer microwire having a 15 micron square cross-section with a total length of 20 mm. FIG. 2B is an electron micrograph of a close up image of a conducting polymer microwire having a 15 micron square cross-section with a total length of 20 mm. Source: http://www.ineffableisland.com/
Read More........

Google files patent for wearable medical device

Google has filed a patent application for a wearable medical device, able to use nanoparticles to detect and treat illnesses such as cancer.
For those wishing to protect their health and extend their lifespan, a futuristic medical device may become available in the next several years. Details of this wearable technology – known as a Nanoparticle Phoresis – have been published online by Google, via the World Intellectual Property Organisation. The patent application describes a strap, or band, mounted on the lower arm. Similar in appearance to a wristwatch, it would "automatically modify or destroy one or more targets in the blood that have an adverse health effect." This would be achieved by beaming energy into blood vessels to stimulate cells and molecules, increasing their effectiveness at fighting diseases. It could even be used on synthetic nanoparticles. Millions of these tiny objects would be introduced into the wearer's bloodstream, then activated by magnets in the wristband and directed to specific locations. In addition to its physical treatment abilities, the Nanoparticle Phoresis could generate vast amounts of data – not only helpful to the user, but also to researchers and doctors. It could accept inputs from the wearer regarding his or her health state, such as "feeling cold," "feeling tired," "pollen allergy symptoms today," "stressed," "feeling energetic," etc. According to the patent, these user inputs "may be used to complement any other physiological parameter data that the wearable device may collect and establish effective signal levels for and timing of modification of the target." Analysts forecast that wearable technology will see huge growth in the coming years, with unit sales potentially reaching into the
hundreds of millions. This new device from Google – if successfully developed – could become part of that rapidly evolving ecosystem. Initially aimed at patients who are seriously ill, this product (or its derivatives) could also be offered to mainstream consumers who aren't necessarily in bad health, but wish to monitor and improve their well-being. For those with a needle phobia, injections might be possible using high-pressure jets. Although the patent itself makes no mention of this, we can speculate that such a procedure would eventually be incorporated into a wristwatch form factor. Similar to the "hypospray" on Star Trek, these jets would ensure that the skin is not punctured. High-pressure jet injection was covered on our blog in May 2012. Looking further ahead, the prospects become even more exciting. Bill Maris – who helped form Google Calico – this month stated his belief that humans will live to be many centuries old in the future, while today's cancer treatments will seem "primitive" within just 20 years. His comments echo those of futurist and inventor Ray Kurzweil, also employed at Google and currently involved in AI research for the company. Kurzweil predicts that nanoparticles will be superseded by nanobots – small and compact enough to feature motors, sensors and other tools, allowing them to be controlled with extreme precision directly inside cells. If this idea sounds like science fiction, then consider this: a handheld smartphone today contains more processing power than a room-sized supercomputer of the 1980s. With ongoing advances in miniaturisation, together with new materials such as graphene, the future trend seems inevitable. As humans become ever more dependent on technology, our bodies will gradually begin to incorporate these and similar devices on a permanent basis. Later in the 21st century, the line between man and machine could become blurred. Source: Article
Read More........

Apple paves way for creation of 3D, interactive images from handheld devices

Apple has patented a device display that uses lasers, micro lenses and sensors to create a 3D "holographic" image as well as detecting how a user interacts with it in real time, according to Apple news feed and forum Apple Insider. The "Interactive holographic display device" would allow a 2D display panel to create a 3D, interactive image, which Apple presumably intends to deploy in devices such as iPhones and iPads. The system would generate multiple views of an on-screen object from various viewing angles with lenses deflecting laser light.  Apple Insider reports that single finger gestures would turn or move the image, while pinch gestures would change the size. Finger speed would also have an impact on turning or moving the image.  The patent was filed for in February 2011. More information... Apple Insider, Contact Details and Archive... AppleSource: InAVate
Read More........

Apple seeking patent for interactive 3D display


Apple has filed a patent application for an Interactive 3D display system which would allow users to manipulate objects in mid-air. The system involves light being projected through a non-linear crystal, for example, which would convert the signal into a floating 3D image that users could interact with. A sensor assembly logs user input such as touches and swipes to manipulate image. According to the document filed with the U.S. Patent and Trademark Office, the system would consist of four main parts, beginning with the display creating a primary 3D image. The optical system within the unit would create a secondary 3D image based upon the first one which the user would interact with. A sensor system would gather information on the user’s interaction with the secondary 3D image and the display would then update the primary image based on user interaction feedback. How far the system has been developed since the patent was filed two years ago is unclear, but it shares many features Vermeer - with a 360-degree viewable tabletop display created  by Microsoft Research in 2011. With non-interactive holographic displays are already creating a buzz in the retail sector as a new era in digital signage, the creation of an interactive model is the next logical step. Contact Details and Archive...AppleSource: InAVate
Read More........